

 1

Abstract — Real Time Operating Systems

lie at the heart of most embedded systems.

Connectivity of these systems enable user to

monitor and control these systems remotely.

This report show current systems have

many faults in which the system is

connected to each other, and to the world.

An analysis shows these systems could be

significantly more secure if security policies

were followed and if current computer

networking security techniques are applied.

Index

0.0 OUR CONTRIBUTIONS .. 1

1.0 INTRODUCTION .. 1

2.0 DEFINITIONS .. 2

3.0 RELATED TECHNOLOGIES AND WORK 3

4.0. CURRENT SECURITY ISSUES IN RTOS 4

4.1 INSECURE SCADA .. 5

4.2 CODE INJECTION .. 6

4.3 INEFFICIENCY OF ENCRYPTION 6

4.4 EXPLOITING SHARED MEMORY 6

4.5 PRIORITY INVERSION ... 7

4.6 DENIAL OF SERVICE ATTACKS 7

4.7 ATTACKING INTER-PROCESS COMMUNICATION 8

5.0. COMMON APPROACHES AND SOLUTIONS 8

5.1 ENFORCEMENT OF SECURITY POLICIES 8

5.2 IMPROVING EXISTING SCADA 9

5.3 DYNAMIC SECURITY POLICIES THROUGH HEURISTICS 9

5.4 USE OF PRIVILEGE LEVELS .. 9

5.5 PROTECTING MEMORY ERROR! BOOKMARK NOT DEFINED.

5.6 PRIORITY INHERITANCE PROTOCOL 10

5.7 MILS (MULTIPLE INDEPENDENT LEVELS OF SECURITY)... 10

6.0 COMMERCIAL SYSTEM DESIGN 11

6.1 GREEN HILLS SOFTWARE, INC. 11

6.2 LYNUXWORKS, INC. .. 12

6.3 WIND RIVER, INC. .. 12

6.4 MICROSOFT, INC. ... 13

7.0 SOME KNOWN CASES OF SECURITY LAPSE 13

7.1 SECURITY IN VEHICLE NETWORKS 13

7.2 RISKS IN SCADA SYSTEMS 14

7.3 ATTACKS ON MOBILE PHONES 14

8.0 LESSONS LEARNED ... 15

9.0 CONCLUSION ... 15

10.0 REFERENCES ... 16

0.0 OUR CONTRIBUTIONS

We contributed to Sections:

5.1 Enforcement of security policies

5.2 Improving Existing SCADA

5.3 Dynamic Security policies through

Heuristics

8.0 Lessons Learned

1.0 INTRODUCTION

 he Real Time Operating System (RTOS)

is a computing environment used in

systems that require a response within very

specific time constraints. The correctness of

the system depends not just on the correct

logical result but also on the delivery time of

the result. For most applications, real time

performance is the main criterion in evaluation

of RTOS. RTOS employ several methods to

ensure that it meets the real time system

Real-Time Operating System Security

Weider D. Yu (Dipti Baheti, Jeremy Wai)

Computer Engineering Department, San Jose State University, San Jose, CA

95192-0180

T

 2

requirements. This makes RTOS mostly a

single purpose system.

There are two folds to security relating to

RTOS. Firstly, security within the RTOS

revolves around the ability to keep jobs

separate so one task does not interrupt another.

This problem becomes more complex as RTOS

is needed for more complex applications while

still keep its deadline requirement. Security of

a RTOS also relates to the stability of the

overall system because insecure tasks can

cause the system to fall into an unknown state

and crash. This is unwanted because RTOS are

often used as mission and safety critical

components of certain applications.

The second security issue has to do with RTOS

in a network. RTOS seldom operate alone in

modern day industry. It usually controls certain

automated machinery and are often linked to a

monitoring system that connects to other

RTOS for management of an entire facility. It

is used in wide variety industry include

electrical power grids, traffic signals, water

management systems, oil refineries, chemical

plants, and pharmaceutical manufacturing.

These control networks are often called

supervisory control and data acquisition

(SCADA) or distributed control system (DCS).

These fields are merging as technology

advances. They connect to their companies’

database and mainframes running other

operations, which are also connected to the

internet. This meant that RTOS can potentially

be reprogrammed by intruders to either crash

or do harm to those RTOS that controls

physical machinery. The obscurity of SCADA

in the public eye gives SCADA the illusion of

anonymity, but this is not security.

Security of both intra-RTOS communication

and SCADA are similar to that of non real time

operating systems and computer networks. As

technology of control systems merge to that of

computer networks, problems that control

system encounters will mirror that of the

computer network counterpart. This is a

blessing and a curse because problems that

plague computer networks will also plague

SCADA, and this may have an even a bigger

impact to the industry as SCADA networks

requires high rate of reliability and RTOS often

controls sensitive equipments that cannot

malfunction.

2.0 DEFINITIONS

RTOS – Real-Time Operating System, real

time in the sense that a process running will

finish within the deadline specified, or else

even if the process returns useful function,

it would be too late. An example would be

the antilock brake system in a car. If it

returns wheel slip information too late, it

would be useless.

Embedded Systems – Usually has a

microcontroller at the heart of the system.

It can vary in function depending on its

programming. But for this article, it is the

physical component that a RTOS sits.

Deadlines – In an RTOS, deadlines are the

amount of time that the system can perform

a process and return the results. If it cannot

return the results before the deadline, the

results might as well be incorrect.

SCADA – Supervisory Control and Data

Acquisition, it is a network of machine’s

control units tied together to a workstation.

The workstation is able to read relevant

machine data. Workstation can optionally

send commands to the machines. Machines

could be anything from sensors, to motors

opening and closing valves.

DCS – Distributed Control System, a network

of controllers where each one controls one

or more machinery. A system of controllers

forms a network for monitoring and

changes. Availability of off-the-shelf parts

has made SCADA and DCS virtually the

same.

Virus – A computer virus is a small software

program that spreads from one computer to

another computer and that interferes with

 3

the computer operation. A computer virus

may corrupt or delete data on a computer,

use an e-mail program to spread the virus to

other computers, or even delete everything

on the hard disk.

Denial-of-Service attack – Denial of Service

(DoS) is an attempt to make a computer

resource unavailable to its intended users.

A common method is to flood the target

machine with false requests so that it

cannot respond to legitimate traffic.

Usually a DoS attack does not intend

information theft or other security losses,

but it can cost the target a great deal of time

or money.

Encryption – A way to hide plain data with

keys or passwords to deny unauthorized

access into sensitive data.

VLSI – Very Large Scale Integration. It is the

process of creating integrated circuits on a

single chip by combination of very large

number of transistor based circuits.

3.0 RELATED TECHNOLOGIES AND WORK

With advances in VLSI technology, embedded

systems have become very inexpensive.

Complex circuits can be achieved on chips of

very small sizes. Therefore, embedded systems

can be found in devices ranging from aircraft

and military systems to industrial equipment,

automobiles, personal devices and even smart

toys. A number of embedded system

applications require them to be connected to a

network of some sort. This enhances an

embedded system’s utility and capability by

enabling them to be remotely controlled and by

allowing certain systems to download and

implement new features and updates on the fly.

Control systems installed in industries can use

networks of embedded control nodes for

various applications such as chemical

processing, electrical power distribution and

factory automation. The entertainment devices

popular in homes are connected to the internet.

The set-top boxes and gaming consoles can

download new games and features on demand.

Household appliances can be connected to a

network to automate management of lighting,

heating and also security.

One of the first examples of a functional Real

Time Operating System implemented on a

large scale was the Transaction Processing

Facility developed by IBM. Since then, Real

Time Systems have evolved and undergone

many changes. Now there are several hundreds

of Real Time OSs available. Some of these are

very powerful and can be used for several

general purpose applications while there are

some simple implementations that are designed

for only one particular purpose. Irrespective of

the design of the Real Time System, its

consistent ability to accept and complete a task

within a limited time remains its key

characteristic feature.

The connection of embedded systems to

networks means that they are not only

susceptible to security issues caused by their

own design, but also to security issues faced as

a result of interfacing to external networks. The

widespread use of RTOS in various domains

makes security a critical aspect in their design.

Security issues within a RTOS system pose a

problem that could slow the performance of the

system. This is why most RTOS systems are

especially configured to handle a certain job.

This way, the whole system is optimized to do

one and only one task, and thus would excel at

it.

Figure 1. Relative importance of different criteria in

selection of Real time operating system. (Ref:

www.embedded.com)

 4

As technologies advances and RTOS becomes

easier to deploy (by being in an embedded

system) and more practical than existing

systems. More and more industry started

utilizing RTOS to do a job that used to be done

by people or simpler systems. Embedded

systems with RTOS have become very

common in large number of industries.

4.0. CURRENT SECURITY ISSUES IN RTOS

There are many issues surrounding the

emergence of computer systems in the world of

process controls and machine automation that

used proprietary system. Such systems were

often simpler and made from the ground up for

the company’s clients. But as the proliferation

of small off-the-shelf devices made them easy

to obtain, clients stopped seeing the use of

companies that specialized in expensive

process controls. Computer networking spread

at the same time and the same industry saw the

convenience of linking multiple embedded

systems together to a monitoring station that

enabled workers to control machinery more

effectively.

Unfortunately, the connection of the embedded

system to a network via which it receives

instructions, control parameters and new

programs also makes it vulnerable to attack

from malicious sources. It could be done by an

external party or even an internal miscreant.

Since it is not necessary to change a program to

make it misbehave, it can be done relatively

easily by entering an invalid command or

wrong parameters. Attacks on website such as

Google, Amazon etc that result in denial of

service, are not uncommon these days. These

kinds of attacks can be replicated on embedded

systems also. There have been incidents where

hackers have achieved access to SCADA

systems, thus compromising their security. In

1998, there was an incident where a 12 year old

hacker got access into the computer systems of

the Roosevelt Dam and gained control of the

floodgate operation. Such attacks not only

cause physical and economic loss, but can also

endanger public safety. [9]

Often during the design of embedded system,

the goal is to provide good performance and in

the process of trying to maximize performance,

the security aspect is not given due importance

in the design requirements. The Operating

System has the ability to control the memory

and processor resources of a system. If the

Operating System is not built with security in

mind, it will always be vulnerable to attack and

fail to prevent and limit the damage due to

unauthorized access. Resistance to such attacks

can be ensured only if security is built into the

system architecture and implementation.

Once attackers gain unauthorized access to an

embedded system, they have the potential to

bring down the system in many different ways.

Depending on the system that has been

targeted, these attacks can cause great financial

losses or even loss of life. The attacks can

compromise the system’s integrity,

confidentiality, authenticity or availability.

Sniffing the data transmitted across the

network is an example of an attacker trying to

gain access to confidential information. If

proper encryption methods are not employed,

once the attacker intrudes the network, he/she

might be able to sniff the communications. An

attacker could learn all the data and control

commands while listening to the traffic and

could use these commands later to send false

messages. An attacker can also tamper with the

data transmitted over the network and thereby

compromise its integrity. The stored data can

also be made target. This can cause devices to

fail at a very low threshold value or an alarm to

not go off when it should. Another possibility

is that the attacker, after gaining

unauthenticated access, could change the

operator display values so that when an alarm

actually goes off, the human operator is

unaware of it. This could delay the human

response to an emergency which might

adversely affect the system’s safety, the

mission’s success or may even jeopardize

people’s lives.[8]

 5

4.1 INSECURE SCADA

SCADA is everywhere today. People do not

see it because it is transparent or pervasive to

their daily lives. It is usually monitored by

some company or by government workers far

away that people do not see. These include:

• Electric Power that goes to your house

• Water pumps that pumps water to your

house

• What that goes out of your home

• Traffic lights

• Public transportation

• Air conditioning in the building you

work in

• The cell phone you use

• Natural Gas that goes to your house

Most people that know about these systems

either work in the industry or monitor the

systems. So when these systems get attacked

by intruders, people do not understand the type

of impact it has, they only read it in the news

once in a while and forget about it. A

presentation [5] made by veteran security

experts claim that many SCADA all over the

country are vulnerable. There was often no

authentication in the SCADA system. Old

SCADA systems were never updated, only

replaced after 5 years. New systems were

patched every month. Companies running

SCADA denied it was connected to the internet

while it actually was connected to the internet.

SCADA not made to connect to the internet

were vulnerable if they were connected.

SCADA intrusion by disgruntle employees

were easy; it was made worse when they were

connected to the internet. Penetrative tests, to

see how vulnerable SCADAs are, are available

widely. It was used to conduct tests by the

researchers. Administrator and managers in

various companies often lied or do not know

about security vulnerabilities their system had.

Wireless access points were proven to be a big

problem. If IT in a company did not provide

adequate access to the company’s network,

employees often connected their own wireless

router to the network with no password

protection. Some companies had multiple

networks, one for labs and another for office;

they did not realize that both networks were

often connected together at multiple points.

Companies with IT department often did not

realize their network diagram did not match the

actual configuration of their networks.

Employees were allowed to connect their

laptops either physically or through USB

drives to the SCADA network, spreading

viruses. Some SCADA systems involved in

production of gas and oil had no protection at

all. Large companies with websites had no

network separation between their private

network and their website. Penetrative test was

able to go through the website to the

company’s private server using unpatched

network. Private networks were simply setup

with default passwords, because the customer

never bothered to change it.

Even though these vulnerable SCADA systems

are not well known, they could be found easily

by looking on the internet. SCADA venders

often advertize their clients to claim

importance and at the same time provide

detailed information from their site, from there

it provides a vector into those SCADA

systems. SCADA that are electronically secure

would sometimes be physically insecure.

Researchers found power substations that were

unlocked with a computer running connected

to all the equipment and the SCADA system.

Some isolated workstations even have insecure

wireless connection to SCADA. Dams also had

insecure SCADA system where an intruder

could actually release water from the dam to

flood inhabited areas. Intruder could also

disrupt other systems in the Dam. Vulnerability

did not stop there. Even if tampering was

detected, there was often no way to track down

where it came from. There were no user

authentication in the system, everyone used the

same account. Tracking systems were often

turned off or never enabled. Many of these

intrusion tests done by the researchers were not

difficult to perform.

The researchers found that many security

policies were simply not enforced; employees

often did not follow protocol when dealing

with the system or simply did not know there

were security policies. They also found that

 6

these were not isolated incidences, security

measure were either completely lacking or

lacking one way or another.

4.2 Code Injection

Attacking a target system through code

injection is one of the most common and

potentially most dangerous types of attack on

modern computer systems. Such attacks work

by inserting and executing arbitrary code on

the victim machines. Generally the objective is

to get control of the machine’s program

counter (PC). This enables the attacker to

change the flow of instruction execution and

cause the PC to execute malicious code

inserted by the attacker himself. This injected

code could be source code for an interpreted

scripting-language, intermediate byte-code, or

natively-executable machine code. Such code

may be designed for instant attack, where it

executes instantly (e.g. Stealing a user’s

current session information or executing a

modified SQL query), or it may execute at a

later time.

Another common way by which attackers

target systems, is by exploiting the code that

accepts input from a source. The input could be

a simple string of characters. But if not checked

for issues such as stack and heap overflows, it

can cause extensive damage. There have been

instances where buffer overflows was caused

by maliciously prepared embedded images or

audio files that the operating system failed to

validate and that enabled an attacker to execute

arbitrary code on the system.

4.3 Inefficiency of encryption

There are many methods to encrypt data

passing through a network, whether within a

company or over the internet. One way to

protect data going through an unsecure channel

is using keys of public and private

combination. The Public key encryption

method uses two mathematically related keys.

The data is encrypted with one key and

decrypted with the other. Thus it is an

asymmetric process. If a person sends out a

message that has been encrypted using the

public key, then only the person with the

private can decrypt and read the valid message.

On the other hand, Private Key encryption uses

a single key. This key is known only to the two

parties involved in the transaction. This

process is computationally less intensive but it

requires that the private key should remain

private.

These methods may be suggested as a

technique to solve our problems of

susceptibility to an external attack. But

encryption is not fool proof in itself. It is

possible for an attacker to intercept an

encrypted packet and alter its contents before

passing it on. This results in scrambled data.

There are other techniques (or combinations of

them) such as hashing that is used to secure the

data transmission. But these elaborate methods

are taxing for most embedded systems. The

main reason is the high computational

capability required for encryption. The fast

processor and high memory resources required

for such auxiliary activities are prohibitive for

many embedded systems which have very

limited processor and memory. Another reason

why encryption cannot be used is illustrated by

the following example. Consider a gaming

console that has access to the internet. If the

system is to allow access to third part games,

then we could not possibly use private key

encryption. Public key encryption, on the other

hand leaves the system open to attack from

anybody pretending to be a game developer.[6]

4.4 Exploiting Shared Memory

The early RTOSs lacked a memory

management unit. They used a flat shared

memory model for inter-process

communication. This method can be explained

by assuming that the shared memory is like a

white board in a room full of people. The

people use the board to pass messages to each

other. Person A comes in and writes a message

for a person B on the white board. However

another person can come and modify this

message before person B reads it. If this were

to happen in a computer system, it would not

be difficult to image how the whole system

could crash. This method does work but it

 7

requires many system calls and careful

management. But it is clear how a malicious

process can corrupt the contents of the memory

easily.

Since there is no restriction on the reading of

memory, a malicious program may read

sensitive information and compromise privacy.

For instance, it can look for ASCII-data

patterns in memory that could correspond to

passwords or personal information. The

program could then use the network link it

came in to send that sensitive information to a

third party.[6]

4.5 Priority Inversion

RTOS today need to process multitudes of jobs

and each of them might share resources like

memory or I/O. Limited resources like these

cannot be share the same way that memory is

shared. Since some processes are inherently

more important than others, they are put into a

priority, where higher priority processes could

force a context switch with a lower priority

process. Another problem with shared memory

is that a process needs to be able to completely

write a block of memory and cannot be

interrupted while doing so; this means that

other processes that want to use the memory

cannot do so else it would cause memory

inconsistency. The concept is called mutual

exclusion, where only one process can use a

resource at a time.

Figure 2. Proc size corresponds with job length.

Mutual exclusion and process priority tries to

solve the problem of data sharing and

processor sharing, respectively. The

combination of both creates another problem

called priority inversion. This happens in a

system of three or more priority levels.

For example, figure 2 shows three processes;

process H has the highest priority, then process

M, then process L. process H and process L

share the same resource R so one has to wait for

the other to finish. In a normal situation,

process H would finish with resource R, then

let go of resource R and processor control,

process L would take over with resource R,

finish, and process H would take over again.

An unwanted situation occurs when process M

forces context switch because process L is of

lower priority.

Figure 3. Proc H cannot force context switch on Proc

M because it needs Resource R that Proc L is

holding.

Shown in figure 3, while process L is in

execution, process M forces context switch,

when process H tries to take control and use R

it cannot because process L has resource R, so

process H is forced to wait until process M is

done execution and also process L’s execution

before it can use resource R again. This

effectively ‘inverts’ the priority of processes

because process H is the last to execute.

4.6 Denial of Service Attacks

There are several ways in which a malicious

piece of code can take down the system.

Suppose a system consists of two application

programs each running one task (with the same

priority, using Round Robin technique). Under

ideal conditions, the two processes share the

CPU’s time, each taking 50%. But due to bad

design or malicious intent, if one of the

applications spawns 100 additional tasks, there

are 101 tasks sharing time with the good

application. Thus the good application is

 8

starved of CPU access. It gets less than 1% of

CPU access instead of 50%.

Figure 4. Malicious code causes CPU starvation

(Source: Green Hills)

Denial of Service occurs when one part of the

system “hogs” system resources such that other

parts of the system cannot operate normally.

For example, if one program hangs in an

endless loop, other programs are starved of

CPU time. Or perhaps if one program allocates

too much memory, it starves other programs’

memory requirement. Denial of service can be

caused by bad programming or by a virus or

hacker accessing the system externally.

4.7 Attacking Inter-Process Communication

Figure 5. Malicious process disrupting the behavior

of embedded system (Ref: www.opengroup.org)

To transfer information from one process to

another, most RTOSs use messaging queues.

The sending process has to make a system call

to the RTOS. A handle is an identifying

number to indicate which process is supposed

to receive that message. The system call

allocates a pointer to the memory location

where the information is present and a handle

for the destination. Most RTOSs have no way

to ensure that an incoming message is from a

legitimate source. As long as the handle is a

valid value, the request will be completed. This

allows a simple program that sends random

messages to all possible destination handles to

effectively scramble a system’s inter-process

communications. Figure 5 gives an illustration

of this problem.

5.0. COMMON APPROACHES AND SOLUTIONS

Since embedded systems resemble more and

more like computer systems, some solutions

are the similar, but not all. There are problems

unique to embedded systems and SCADA

because of their greater requirements like

uptime, critical functions, deadline, and power

consumptions.

5.1 Enforcement of Security Policies

Many SCADA systems could simply be made

more secure if their companies have a

competent IT staff that did regular checks on

their SCADA network. There are tools online

to check for vulnerabilities and there is no

excuse not to do so. Management of these

companies should obviously step up and

require their employees to follow protocol

when dealing with their SCADA system. Since

SCADA systems now often use common

computer networking, there should be no

problem in making SCADA as secure as

computer networks. Venders could help by

requiring setup procedures to include

mandatory password change and reset when

customers buy their product. Companies could

forbid employees from plugging in USB drives

from one computer to another, to stop virus

spread. SCADA system should also keep track

of all employees’ accounts and all employees

should have their own account. Private

networks should obviously be private and a

computer should never have access to multiple

networks in a company. Finally, former

 9

employees’ accounts should be deleted from

the system immediately thus preventing

retaliation.

5.2 Improving Existing SCADA

Old SCADA should not get a pass at being

insecure simply because they are old. SCADA

could be partially upgraded to have security

software between employee monitors and

machinery. Readouts from many machineries

could go directly into an Embedded controller

with security software that sends secure

information to employee monitors. The

physical setup should then be locked and made

hard to intrude physically.

5.3 Dynamic Security Policies through Heuristics

To prevent security breaches even in newer

secured systems. A SCADA network can be

custom tuned by understanding the context of

its environment. If the SCADA system were

deployed in a natural gas production

environment, a computer could keep track of

all the sensors and disallow any commands that

would jeopardize the stability of the system.

For example, a computer monitoring various

valves and tanks will see the correlation

between valves and tank pressure. If an

employee enters any command that could

initiate a failure, the computer directly

controlling the values should then reject the

command. The invalid command should then

be recorded in a central database.

The centralized database should have

multi-level user policies that tiers employees

into different access levels. Low level access

would either be read-only or minor changes to

non-critical systems. More access is granted to

higher and higher levels. The specifics of

access would depend on the environment it is

deployed. The database would also keep track

of employee commands and generate a history

of it to be viewed by managers. The database

itself should also allow or deny changes to the

system depending on past behaviors of the

employee. If an employee is denied a valid

change to the system, a manager could have it

approved with higher access. This would also

be recorded and put against the employee’s

command trend. If this type of change to the

system happens often enough, then the security

policy would change to allow that employee to

have permanent access that system change,

without manager’s explicit approval each time.

This system will prevent intruders from

sending in fatal commands because even if an

intruder gains access to the computer. The

computer itself will reject the command. If the

intruder was able to fake an employee’s

authorization, the database heuristic would

pick up on the peculiar command and reject it.

5.4 Use of Privilege Levels

The use of privilege levels gives the RTOS a

tool for preventing malicious programs from

seriously affecting system operation.

Legitimate programs usually do not need to

alter any system-level operation, such as

disabling interrupts. The operating system

reserves this sort of system level access for

only certain programs. Usually, these are the

programs that are present during the boot

sequence .Other programs (such as application

programs downloaded from the network) are

not given enough privileges to modify

functions that can potentially disable the

system.

Such a mechanism can be implemented by the

use of “rings”. These rings represent the

various privilege levels in a system, and decide

what a program running at a particular

privilege level can or cannot do. Typically a

system has a minimum of two rings. The inner

ring is the kernel mode. It has least protection

and can access most resources. The OS runs in

this mode during start up. The outer ring

corresponds to the User Space and is used

mostly for applications. It has the maximum

level of protection and minimum access to

resources.

The basic idea of memory protection to solve

the problem of unwarranted memory access is

to isolate the process from each other and from

the OS. The memory management unit forms

an important part of this solution. The MMU

associates certain pages of the physical

memory with a virtual address space for a

particular program. A task can only access the

memory that has been mapped to its virtual

addresses. Thus the system can prevent one

program from writing into the memory of

another program. This is achieved through a

hardware mechanism that can establish

multiple address spaces, and also detect if a

program tries to read or write outside of its

assigned address space. Full virtual memory

functionality can be used to protect memory

but can slow the operating system down

depending on what speed requirements it

needs.

Figure 6. Operating System Protection Rings

5.6 Priority Inheritance Protocol

The way to prevent priority inversion is to not

let it happen. Priority L has the lowest priority,

then process M, then Process H

highest priority. When process L

with resource R, it inherits the priority, if

higher, of Process H. This means that Process

will have high priority so process

force a context switch on process L

will finish with resource R and revert to the

lowest priority state. Process H can then come

in and take resource R or force context switch

on process M if it gets processor time first.

10

an important part of this solution. The MMU

associates certain pages of the physical

ddress space for a

particular program. A task can only access the

memory that has been mapped to its virtual

addresses. Thus the system can prevent one

program from writing into the memory of

another program. This is achieved through a

that can establish

multiple address spaces, and also detect if a

program tries to read or write outside of its

Full virtual memory

functionality can be used to protect memory

but can slow the operating system down

speed requirements it

Figure 6. Operating System Protection Rings

rotocol

The way to prevent priority inversion is to not

has the lowest priority,

H with the

 is running

, it inherits the priority, if

. This means that Process L

will have high priority so process M cannot

L. Process L

and revert to the

can then come

or force context switch

if it gets processor time first.

5.7 MILS (Multiple Independent

It is an architecture that defines

approach to security. Unlike monolithic

kernels that perform all trusted functions for a

secure operating system, MILS introduces

concept of a separation kernel to implement a

set of functional security policies that regulate

the information flow.

The MILS architecture provides a reusable

formal framework for high assurance system

security in embedded systems.

kernel is the base layer of the system and

creates separate MILS process spaces

(partitions), enforcing data separatio

information flow control within a single

microprocessor. The Middleware layer

provides services such as resource allocation,

object-oriented inter-partition or real

distribution services. Middleware services are

concerned about end-to-end s

message flow. The Applications layer provides

application specific security functions such as

Firewalls, etc. The policy enforcements by the

Micro kernel, Middleware and Application are

non-bypassable, tamper-proof, evaluatable and

are always invoked. The advantages of MILS

separation kernel are that it is possible to know

for each object, where the inputs came from

and where the outputs are going. The Data for

each object remains private. Additionally, each

layer may be evaluated and enh

separately without affecting other layers. Once

the separation kernel is proven and secure,

higher level secure software, such as a secure

communications mechanism, web server or file

system, can be layered on top.

A system built on such a concept r

certain hardware support. A few of the many

factors that need attention before such a system

can be considered are given below.

• Processing power: The real time system

must have sufficient computational

capability to meet the worst case timing

requirement of the system.

• Privileged Mode: Some instructions are

executed only by the Separation Kernel, so

the system must provide for a p

mode.

MILS (Multiple Independent Levels of Security)

It is an architecture that defines a layered

approach to security. Unlike monolithic

kernels that perform all trusted functions for a

secure operating system, MILS introduces the

a separation kernel to implement a

set of functional security policies that regulate

The MILS architecture provides a reusable

formal framework for high assurance system

security in embedded systems. The separation

kernel is the base layer of the system and

creates separate MILS process spaces

, enforcing data separation and

information flow control within a single

The Middleware layer

provides services such as resource allocation,

partition or real-time data

distribution services. Middleware services are

end secure inter-object

message flow. The Applications layer provides

application specific security functions such as

Firewalls, etc. The policy enforcements by the

Micro kernel, Middleware and Application are

proof, evaluatable and

lways invoked. The advantages of MILS

separation kernel are that it is possible to know

for each object, where the inputs came from

and where the outputs are going. The Data for

each object remains private. Additionally, each

layer may be evaluated and enhanced

separately without affecting other layers. Once

the separation kernel is proven and secure,

higher level secure software, such as a secure

communications mechanism, web server or file

system, can be layered on top.

A system built on such a concept requires

certain hardware support. A few of the many

factors that need attention before such a system

can be considered are given below.

Processing power: The real time system

must have sufficient computational

capability to meet the worst case timing

requirement of the system.

Privileged Mode: Some instructions are

only by the Separation Kernel, so

the system must provide for a privileged

 11

• Memory Management Unit: The MMU

provides separation of address spaces

between the partitions. Data isolation or

damage limitation is not possible without

hardware support for separation. The

processor must have access to the required

memory resources and must provide the

Separation Kernel with the ability to

restrict partition access to memory.

• Instruction Traps: The processor must have

some mechanism to transfer control to the

SK if a partition attempts to execute a

privileged or invalid operation.

These are basic processor features and are

generally available on many commercial

microprocessors.

In this way, we see that through separation, we

can develop a hierarchical model of security

services. Each layer of this model utilizes the

security services of a lower layer to provide a

new security functionality that can be used by

the higher layers. Each layer is responsible for

only its own security. The separation kernel

concept is powerful as it allows software with

different security requirements to run on a

single processor. For example, an application

containing classified data and algorithms can

safely occupy one partition while another

partition is connected to the unclassified

internet.

Figure 7. The use of Separation Kernel to improve

security (Source: www.ois.com)

This can lead to enormous cost savings in

product development as it can allow legacy

operating systems (such as Windows and

Linux) and non-critical applications to run in

secure partitions on a processor. This is

particularly important for large scale

embedded systems with many people-years

invested in existing code.[7]

6.0 COMMERCIAL SYSTEM DESIGN

Embedded systems are everywhere in the

modern age, and many companies provide

services for virtually any needs. The embedded

system could be configured for anything from

controlling lighting in your house to

controlling the power grid.

6.1 Green Hills Software, Inc.

This company offers wide variety of RTOS

solutions depending on your needs. Their

RTOS range high power with security standard

to micro kernels that can boot up in 1500

cycles. Their INTEGRITY RTOS is certified

by NSA-managed NIAP labs to EAL6+ High

Robustness. EAL evaluation is how secure a

system is regarding the Common Criteria, an

international standard. It also has hardware

memory to protect itself from incorrect

operation or tampering. Memory is divided

into separate secure partitions and none can

access each other, the only way for them to talk

to each other is through the kernel by message

passing. They also offer cheap alternative to

their INTEGRITY line with velOSity RTOS. It

features very short interrupt response time that

is statically known.[3]

Some of their better known clients are Toyota,

NASA, Lockheed Martin, Ford, and Northrop

Grumman. Toyota Prius uses their RTOS for

power train, drive train, power steering,

anti-lock brakes, air bags, body control, and

electric motor control system. NASA used

their INTEGRITY RTOS for the Orion crew

exploration vehicle; this included the

spacecraft’s avionics systems, flight control

module, communications adapter, and backup

emergency controller. Lockheed Martin’s Joint

Strike Fighter uses INTEGRITY to develop its

safety-critical and security-critical software.

Ford uses Green Hill’s compiler and

 12

instruction set simulator to develop control

software for Lincoln Aviator. Northrop

Grumman uses INTEGRITY for Airbus

A380’s inertial navigation system.[3]

6.2 LynuxWorks, Inc.

This company offers its own RTOS called

LynxOS. They offer several variants of it and

some conform to the POSIX standard and the

DO-178B standard. The LynxOS Embedded

RTOS is a hard RTOS that is used when a

highly reliable system is needed. It includes

support for networking. The LynxOS-SE

RTOS features Time and Space Partition for

Fault Containment. It makes it impossible for

one partition to interfere with events on

another. Each partition runs as a virtual

machine with its own resources. Partitioning

each process allows them to have fixed

time-slices with the processor so the system is

predictable at all times. LynxSecure is a

hypervisor and separation kernel that lets

multiple operating systems run on top to allow

guest OS to run their applications. This lets

clients run wide variety of applications on a

single system. LynxSecure isolates each virtual

instance by giving them a partition of memory,

CPU time, and I/O peripherals. BlueCat Linux

is a embedded Linux operating system based

on Linux 2.6. It has preemption points in the

kernel so user can suspend processes and start a

higher priority process. It also has a custom

scheduler that speed up selected task for

execution. Applications written for BlueCat

can be moved to LynxOS if user finds out they

need a hard RTOS.[4]

Some of their better known clients are Boeing,

U.S. Navy, airports, Airbus, John Deere,

military, and U.S. Army. Boeing uses LynxOS

for their cabin services system on Boeing 777.

U.S. Navy war ship DDG-1000 uses LynxOS

in multiple areas like their interfaces of the

ship, the missile launching equipment, the

ship’s propulsion equipment, and

communications equipment. U.S. Navy also

uses LynxSecure for onboard computer

systems where there is a high security

requirement for all military equipment.

Airports around the world uses Common

Automated Radar Terminal Systems (ARTS)

based on LynxOS to direct traffic. Airbus used

LynxOS in A380 superjumbo jet for its

Ethernet onboard that connects 25 PowerPCs

together working in parallel. John Deere used

iRbot’s technology to create R-Gator, an

unmanned vehicle that is used in dangerous

military missions acting as unmanned scout,

perimeter guard, supply carrier and more.

iRobot used BlueCat Embedded Linux to

power the robotics control, navigation, and

object avoidance system. The Medium

Extended Air Defense System (MEADS), used

in United States and Germany, uses Lynx

OS-SE for networking and network security. It

uses LynxOS for its radar system. U.S. Army

used LynxOS for onboard processing for the

Crusader self-propelled howitzer. It also used

LynxOS for shell ballistic calculation and

graphical user interface and real-time

equipment control systems.[4]

6.3 Wind River, Inc.

This company main RTOS product is called

VxWorks. VxWorks is supported by a number

of processors including the

x86 family, MIPS, PowerPC, FreeScale,

ColdFire, Intel i960, SH-4, etc. The VxWorks

RTOS offers enhanced security features

through the use of a Memory Management

Unit and good partitioning schemes. The OS

works on a concept of protection domains. It

provides hardware enforced memory

protection. The single flat memory physical

address space is extended to multiple virtual

address partitions for running different

applications. The kernel has its own domain.

A developer loads an application with

resources such as memory, tasks, queues, and

semaphores into a protection domain, thereby

isolating and protecting the application from

applications in other protection domains. The

protection domain also defines the basis for

automated resource reclamation. The

protection domains can be created either at

system startup, or dynamically at run time, to

encapsulate resources within a system. Some

new versions of the VxWorks AE provide for

 13

temporal partitioning, which allows users to

control the amount of processor time the OS

allocates for each application it runs.

VxWorks has been widely used in variety of

devices from aerospace and defense

applications to networking and consumer

electronics gear, robotics and industrial

applications, precision medical instruments,

and navigation and telematics systems in

automobiles. The systems have been

successfully deployed in millions of devices by

leading companies worldwide. Smiths

Aerospace relied on Wind River Platform for

Safety Critical ARINC 653 to help build out its

Boeing 787 Dreamliner common core system.
NASA used Wind River VxWorks real-time

operating system to develop software packages

for the Mars Exploration Rovers. Motorola

uses it for enhanced, interactive set-top box

design. Companies such as ABB and Honda

have used VxWorks in their industrial

robots.VxWorks RTOS have been used in

many more applications involving industrial

automation, building automation, medical,

transportation, automotive telematics, and

small-footprint consumer devices

6.4 Microsoft, Inc.

Microsoft offers a family of operating systems

under the name Windows Embedded. The

Windows Embedded CE (also known as

Windows Embedded Compact) is a

componentized real time operating system. The

latest version Embedded CE 6.0 offers an open

scalable, 32 bit operating system that

integrates reliable, real-time capabilities with

advanced Windows technologies. It provides a

hard real-time, small-footprint OS with a

redesigned kernel and embedded-specific

development tools. It has a

modular design with a specialized kernel that

can run in under 1 MB of memory. It is

available for ARM, MIPS, SuperH and x86

architectures. Microsoft also makes available a

specialized version of Windows Embedded

Compact, known as Windows Mobile, for use

in mobile phones. It is a customized image of

Windows Embedded Compact along with

specialized modules for use in Mobile phones.

Windows Embedded is used in a variety of

devices ranging from small footprint, real-time

devices to Point of Sale devices like kiosks.

Windows Embedded is widely used in devices

ranging from portable digital picture frames,

GPS devices, Portable Media players, Set Top

Boxes, Remote Metering, VOIP phones,

ATMs, Industrial Controls, etc. The

advantages of using Windows Embedded CE

include the ability to use familiar tools like

Visual Studio and also extend your embedded

device by connecting to Windows PCs, servers

and online services.

7.0 SOME KNOWN CASES OF SECURITY LAPSE

The pervasion of embedded systems in so

many aspects of our day to day life has also

brought to light various instances, where the

security breach in RTOS can have cause great

impact on our lives. Security lapse in any of

these systems that we depend on so implicitly

can potentially endanger our privacy, safety

and well being.

7.1 Security in Vehicle Networks

A security analysis of a car done by University

of Washington and University of California

San Diego found that modern cars have many

security faults within the car’s network.

Incredibly inept, the car’s network has many

faults; even where there was security, it was

not enforced. The car uses a control area

network, where each control unit talks to each

other by broadcasting to all other control units.

The control units themselves decide if they

should react to the message packets. This

makes it very easy for intruders to listen in on

the messages. Another fault is that the packets

sent has no identification, each control unit will

accept messages without knowing if the

message generated is from a valid unit in the

car. The firmware of the control units at many

times demonstrated it could be reflashed with

invalid or edited firmware. The standards that

it put in place to mitigate system failure from

 14

intrusion was not enforced. For example, the

researchers were able to reflash the main

control unit while the car was in motion.

Control unit was stated to reject reflashing

attempts while vehicle is in motion. Packet

protection was so bad that an intruder could

enter random to semi-random packets and it

will fault the vehicle. This was done to

reverse-engineer packets to discover which

packets performed which task. The high speed

and low speed networks comes together and

can attack each other if a control unit

connected to both is compromised. The

instrument panel could all be intruded to give

wrong speed reading, full level, and random

messages. The radio controls on the center

console could be overwritten. An intruder

could keep the radio volume at maximum no

matter what the driver tries to do. Even worse

is that the researchers could adjust all of the

engine functions, such as resetting the engine

crank shaft sensor. Disable the engine so it

knocks excessively when restarted. Fake an

airbag deploy signal so the engine won’t start.

The brakes could be individually turned on and

stop the car without driver intervention. A

denial of service attack could also be

performed on the network to disrupt

communication between each control unit. The

control units could also be programmed to

erase itself to erase the evidence of being

tampered. The conclusion drawn by the

researcher was that the attacks were easy, so

much damage could be done after getting into

the car network, and how the control access

was not enforce evenly throughout the

system.[2]

7.2 Risks in SCADA systems

The risks that SCADA systems face can be due

to an intentional attack to gain unauthorized

access to the control system or it could be

unintentional attack caused due to inadequate

testing, system failure, etc.

There are multiple examples of both types of

attacks on SCADA systems in the recent years.

In March 2008, the Hatch Nuclear Power Plant

in Georgia was forced to shut down after a

software update to the plant’s business

network. The business network was in

two-way communication with the plant's

SCADA network. The software update

synchronized information on both systems.

After a reboot, the SCADA safety systems

sensors detected that the water level in the

cooling systems was dangerously low and this

triggered an automatic shutdown. Although

this event did not cause any public harm, but

the company lost a great deal of money in

revenue and had to spend a lot of money to get

the plant back in running position. This

incident displays how insufficient testing of the

systems can cause havoc. The engineers in this

case did not know that the software update to

the business network would synchronize with

the SCADA network and thus cause such

consequences.

There was another instance in January 2003,

where the Sobig computer virus infected the

computer responsible for controlling the

signaling system for trains on the east coast.

The Sobig virus opens a back door that lets a

hacker gain access without being detected. The

virus infected the systems at CSX Corp.’s

headquarters, causing a temporary shutdown of

signaling and dispatching systems. Various

trains including long distance were delayed for

two to four hours.[10]

7.3 Attacks on Mobile phones

The proliferation of unlimited data plans, open

networks and readily downloadable

applications make the mobile phone segment a

big profit potential for hackers and spammers.

The capability of mobile devices is

significantly advanced than those in the past.

This advancement in technology is very

beneficial but it also brings its own share of

security threats. There have been increasing

numbers of instances where attacks have

caused the device to collapse because the

operating system was compromised. Smart

phones are particularly susceptible because

since they are internet end points, they can be

compromised the same way as PCs by worms,

viruses or Trojans. Also, mobile users tend to

be less hesitant than computer users about

clicking on links, enabling SMS phishers to

 15

gain information or send malware via a link in

a legitimate-looking text message.

Evidently, the rush to get new software into the

market place results is deficient security testing

and sub standard programs are marked off as

acceptable to be deployed.

Figure 8. Software Security best practices applied to

Waterfall model (Ref: www.cigital.com)

8.0 LESSONS LEARNED

There are many lessons that could be learned

over the years. The security of a system starts

at its development phase. It is not something

that can be introduced to a system arbitrarily.

Systems not built with security as a primary

consideration, are more susceptible to attack

and failure than those that had security as one

of the design requirements. The security of an

RTOS starts at its design and development

phase. In this way, software professionals

attempt to build software that can withstand

attack proactively. Good programming

techniques are inarguably important in

bolstering an application against attacks. The

programmers should take care to avoid

common problems such as buffer overflows

and race conditions. The program should be

tested vigorously from security perspective for

different possible attack methods before being

deployed for public use. The critical programs

should be debugged to maximize their security

even in case of attack.

To protect the RTOS from network related

attacks, the common methods of firewalls and

intrusion detection systems should be

deployed. The cryptographic techniques

developed for Wireless Sensor Networks

which suffer from similar constraints of limited

computational capability and low transmission

rate of data, can be applied to Embedded

Systems. The systems should be monitored for

security breaks and the knowledge gained from

this should be cycled back to incorporate

additional features and measure to counter

similar attacks in the future. The networks can

also employ the use of monitoring devices that

regulates the use of resources by the different

processes. It acts like a centralized system that

is invoked by all processes when they want to

access a resource. The process should have

sufficient privileges for the resource. Such a

system prevents malicious programs from

exhausting the system’s resources.

Effective security requires the use of both

proper technology as well as competent

management. Security cannot be achieved by

one time implementation. Even the most

advanced and proven technologies require

constant monitoring. Like all computer

systems, the hardware and software should be

periodically updated to the latest and most

stable definitions. Also, it has been observed

that regular audits by third parties have

exposed many bad practices.

9.0 CONCLUSION

RTOS’s very specific time constraint made it a

primary choice when upgrading existing or

new SCADA system. These RTOS’s inside

embedded systems are being adopted at an

amazing pace. The rise of networking and the

similarity between modern embedded systems

and computers made them very easy to be

connected through existing computer

networks. This enhances the systems’

versatility and production value. Embedded

systems’ inherent reliability and increasing

capability garners its widespread use, but this

comes at a price. Security is lacking in many

SCADA in use. Its lack of security is derive

from the fact that SCADA are omnipresent and

obscure. This was use as a defense against

intrusion but it is not enough. SCADA’s

increasing similarity with computer network

makes them vulnerable to attacks common in

computer networks. This combines with their

 16

importance in society highlights the critical

need to implement security measures to protect

SCADA and the embedded systems that forms

them. Their use only gets more widespread as

time progresses. It is very possible to protect

these systems with modern technologies and

solutions found in computer networks.

Coupled with users following security

protocols, SCADA can be made just as secure

as modern computer networks.

10.0 REFERENCES

[1] Goering, Richard. "Getting a Lock on RTOS

Security." EETimes.com. EE Times, 9 Apr. 2007.

Web. 16 May 2010.

<http://www.eetimes.com/news/design/showArtic

le.jhtml?articleID=198800770>.

[2] University of Washington and University of

California San Diego. Experimental Security

Analysis of a Modern Automobile. 16 May 2010.

Web. 18 May 2010.

<http://www.autosec.org/pubs/cars-oakland2010.

pdf>.

[3] Real-Time Operating Systems (RTOS), Embedded

Development Tools, Optimizing Compilers, IDE

Tools, Debuggers - Green Hills Software. Web. 19

May 2010. <http://www.ghs.com/>.

[4] RTOS for embedded real-time systems from

LynuxWorks – LynuxWorks inc. Web. 19 May

2010. <http://www.lynuxworks.com/>.

[5] Maynor, David, and Robert Graham. "SCADA

Security and Terrorism: We're Not Crying Wolf!"

Lecture. Black Hat Federal 2006. 1800 Jefferson

Davis Highway, Arlington, Virginia. Black Hat

Archives. Web. 18 May 2010. <

http://www.blackhat.com/presentations/bh-federal

-06/BH-Fed-06-Maynor-Graham-up.pdf>.

[6] Monkman, Robert. "Enhancing Embedded

Security." EDN.com 17 Oct. 2002: 61-66.

<http://www.opengroup.org/press/articles/17oct20

02-Enhancing%20Embedded%20Security.pdf>

[7] Alves-Foss, Jim, Scott W. Harrison, Paul Oman,

and Carol Taylor. The MILS Architecture for

High-Assurance Embedded Systems. 2005.

International Journal of Embedded Systems.

<http://www.csds.uidaho.edu/papers/Alve

s-Foss06a.pdf>

[8] Igure, Vinay M., Sean A. Laughter, and Ronald D.

Williams. "Security Issues in SCADA

Networks."Computers & Security 25 (2006). <

http://www1.elsevier.com/homepage/saf/infosec

urity/research/1206_scada.pdf>

[9] Smith, Christopher. "RTOS - Securing the Future

of Embedded Systems." Mtemag.com 01 Sept.

2009. Web. <

http://www.mtemag.com/ArticleItem.aspx?Cont

_Title=RTOS+-+Securing+the+future+of+embe

dded+systems>

[10] Tsang Rose. Cyberthreats, Vulnerabilities and

Attacks on SCADA Networks.

<http://gspp.berkeley.edu/iths/Tsang_SCADA%

20Attacks.pdf>

