
Minimum Time, Maximum Effect: Introducing Parallel
Computing in CS0 and STEM Outreach Activities Using

Scratch

Russell Feldhausen
Kansas State University

Manhattan, KS
russfeld@ksu.edu

Scott Bell
Kansas State University

Manhattan, KS
rsbell@ksu.edu

Daniel Andresen
Kansas State University

Manhattan, KS
dan@ksu.edu

ABSTRACT
This paper presents our experiences and outcomes using
Scratch to teach parallel computing concepts to students just
learning about computer science. We presented versions of
this material to middle school and high school girls during a
STEM workshop and then to undergraduate university stu-
dents enrolled in an introductory computer science course.
Using the Scratch development environment, students are
able to build, modify and observe the changes in the perfor-
mance of applications which utilize multi-threaded, concur-
rent, operations. This includes scenarios which involve more
advanced topics such as race conditions and mutex locks.

Developing these materials has allowed us to introduce
these concepts in a programming environment much earlier
than we have previously, giving instructors in down-stream
courses the ability to build upon this early exposure. Sur-
vey results show that this approach resulted in a significant
increase in both of these areas. For example, the number of
students in our CS0 course who felt they could apply paral-
lel programming to other problems using Scratch more than
doubled, rising from 25 to 55 (out of 61 students that re-
sponded to both surveys). Likewise, the number of students
who felt they understood what parallel programming means
rose from 27 to 56. These results were achieved after just
one class period. Similarly, 27 of the 37 girls responding to
the workshop survey felt that they were capable of learning
to write computer programs and 22 of 41 indicated they had
an interest in a job using HPC to solve problems.

General Terms
Scratch, HPC, Parallel Programming, Outreach, K-12, CS0

1. INTRODUCTION
The increasing availability of low-cost, high-performance

computing (HPC) hardware has led to a growth in research
and development areas that utilize this computing power [2,
8]. This has also led to a growing demand for professionals

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
XSEDE ’14, July 13 - 18 2014, Atlanta, GA, USA.
Copyright 2014 ACM 978-1-4503-2893-7/14/07$15.00.
http://dx.doi.org/10.1145/2616498.2616568 .

who are interested in, and capable of, implementing these
concepts. At the same time, while computer science de-
partments are showing signs of recovering from the recent
declines in enrollment, we are finding it challenging to at-
tract enough students into computer science departments,
and specifically into studying HPC, to meet this continu-
ally growing demand. This is especially true among women.
The percentage of CS bachelor’s degrees earned by women
decreased from 27% in 2001 to 18% in 2010 [14].

It has been shown that a large percentage of students do
not select CS as a major because they have either no idea
about, or have misconceptions about, what computer scien-
tists do [6]. This paper describes one step we have taken to
help build student interest in pursuing a degree in comput-
ing, and specifically to build student interest in HPC. We
developed hands-on activities that provide students with a
glimpse of how useful HPC concepts can be and how integral
this field is becoming in computer application development.

This new approach allows students to experiment with
more complex, real-world problems, earlier in their academic
career. They are able to focus more on the parallel prob-
lem solving approach, without the syntactic overhead en-
countered when using other common programming environ-
ments [15]. Historically, students in our program do not gain
experience implementing HPC concepts until their junior or
senior year. With these activities, we are now able to intro-
duce this material effectively to students with no previous
programming experience.

By introducing HPC using a simplified programming en-
vironment (Scratch), we remove several of the difficulties
students encounter when they first try to implement paral-
lel operations. The Scratch environment allows applications
to launch multiple threads based on a single broadcast event.
Our investigations show that the Scratch environment will
utilize multiple processors if they are available, thus allow-
ing students to easily observe the benefits (and dangers) of
parallel computing. We tested a simple wind forecasting
simulation on a quad-core system and as Figure 1 shows, by
varying the model resolution and the number of threads uti-
lized, there is a definite correlation between computing time
and the number of threads used to generate the simulation
output.

Using Scratch, we have presented this material so that
middle and high school students can visualize and under-
stand the benefits of parallel computing and the variety of
ways in which it can be utilized. Student surveys from both
K-12 students and students in an introductory CS course
show that our work has been successful in building student

Figure 1: Simulation time vs. number of threads
used for a range of model resolutions

interest and self-efficacy in relation to HPC concepts. For
example, after our lesson, over 85% of CS0 students agreed
with the following statements after completion of this ma-
terial:

• “I could apply parallel programming to other problems
in Scratch.”

• “I understand what parallel programming means.”

• “I would enjoy a job that involves using multiple com-
puters working together to solve science problems.”

• “I would be interested in performing research projects
that involved using parallel programming.”

All of this has been accomplished with students who are
just learning programming and in a short period of time (1
or 2 class periods).

2. BACKGROUND

2.1 GROW and EXCITE Programs
The Kansas State University Office for the Advancement

of Women in Science and Engineering (KAWSE) sponsors
both the Girls Researching Our World (GROW) and the
Exploring Science, Technology and Engineering (EXCITE)
programs [1]. These are outreach programs targeted at build-
ing interest in STEM topics among middle and high school
girls, respectively. Attendees are organized into cohorts
of 10-15 students and participate in activities from several
STEM disciplines over the course of each event (which vary
from 1 to 3 days in length). Events are held on Saturdays
throughout the school year, and longer camps are held dur-
ing the summer. Over the past 3 years, the two programs
have been able to host an average of 60 girls per year on the
Kansas State campus.

The focus of these events is to show ways that people
working within various STEM fields help make the world
a better place. Sessions typically last less than an hour,
and tend to be very hands-on, exploratory type activities.
Within the Computing and Information Sciences Depart-
ment, we give attendees an opportunity to explore some
facet of computer science that allows them to see how our
field might fit into their visions of future STEM related ca-
reers. During the summer of 2013, we decided to use a wind

Figure 2: Students collecting data from the wind
modeling application.

modeling program developed in Scratch to show students
how modern meteorologists utilize today’s high-performance
computing equipment to process and model weather pat-
terns [9].

2.2 Introductory Computer Science Course
The need for parallelism to be taught throughout the CS

curriculum is not a new discussion. We can find articles such
as [13], written in 1995, that discuss the need to incorporate
these ideas into various courses. However, this has remained
an elusive goal due to the lack of both affordable hardware
that can support such operations and a programming envi-
ronment that students are able to access easily.

These limitations are beginning to erode, however. With
today’s affordable, multi-core processors, and a variety of
user-friendly development platforms available, there is mo-
mentum building to provide students with HPC experiences
earlier in the curriculum [3, 4, 5, 7]. Our goal is to provide
students with this experience during their first computer sci-
ence course.

Our department’s introductory course (CS0) covers a broad
array of topics from computer science. Besides just learning
about the technical side of the field, the course also pro-
vides students with a view of how computer science relates
to other disciplines. A large percentage of course time is
spent discussing and investigating problems in areas such
as bio-informatics, robotics, security, scientific computing,
simulations and web technologies. Students enrolled in this
course are typically majoring in either computer science or
information systems and must take this course prior to tak-
ing their first programming course.

Given the growing need for graduates that are comfortable
with high performance computing concepts, we have begun
to introduce these concepts into this course. The first step
took place during the Spring, 2013 semester.

2.3 Scratch
Figure 3 shows a screen shot of the Scratch programming

environment which was developed by researchers from the
Lifelong Kindergarten Group at MIT [12]. Scratch is a drag
and drop environment, with keywords assigned to various
shaped command “blocks” which can only connect together
in syntactically correct ways. This greatly reduces the syn-
tax issues that many beginning programming students strug-

Figure 3: Screen shot of the Scratch Environment

gle with. We have found that this enables students of all ages
to learn basic programming concepts and explore advanced
computer programming concepts more easily. We have used
Scratch in a wide variety of environments to introduce pro-
gramming to students in classrooms and outreach activities
from early elementary school (3rd-4th grade) level through
the university level.

Over the last few years, we have been increasing the use
of Scratch in our CS0 course. As was mentioned in sec-
tion 2.2, the objective of this course is not a high volume of
programming, which students will experience in the intro-
ductory programming course (CS1). This course is focused
on showing students various ways that computer science fits
into today’s world and to help them begin thinking about
problem solving in a computational manner. In developing
Scratch-based simulation assignments for this course, we dis-
covered that we can demonstrate some parallel computing
concepts on multi-core processors using this programming
environment.

This led us to the idea that we could begin introducing
these concepts to students earlier in our curriculum, giving
them insight into the benefits of HPC well before they would
typically explore such material (typically in an architecture
or operating systems course which most students take as a
junior or senior).

3. METHODOLOGY
Our objective for this project is to introduce more stu-

dents, earlier in their academic careers, to the possibility of
using high performance computing to solve large scale prob-
lems. There have been three stages to the project thus far.
The examples, lesson plans and problem assignments can be
found at: http://bit.ly/russfeld_hpc.

3.1 Measuring Wind Model Performance
During the summer of 2013, we hosted groups of students

from both the GROW and EXCITE programs. With these
sessions, we are typically very short on time (about 40 min-
utes per session), and in addition to our work with this ap-
plication, we try to include a tour of the Beocat computing
cluster on campus to show the students what a real high-
performance computing system looks like [10]. Therefore,
we utilized a pre-built simulation to allow students to test
and discover the benefits of high performance computing in
a tangible way.

Figure 4: Wind model output

Since students in our target age group would be familiar
with weather maps, we focused specifically on a wind map
simulation. Given our time constraints, we could not ask
the students to do any major development on the applica-
tion. Instead, we walked through the program, explaining
how it functioned and then let the students experiment with
the application we had built to measure performance ben-
efits and limitations. We used Scratch as the development
environment because it provides very easy to use graphi-
cal operations and an easy to follow programming interface.
This enables us to explain the program’s functionality to
students with no programming background.

We began each session with a 5 to 10 minute discussion
of what high performance computing means. More specifi-
cally, we discussed what a multi-threaded application is, and
finally introduced the idea of having multiple processors han-
dle individual tasks simultaneously. As the students grasped
that idea, we were able to introduce our simulation.

As you can see in Figure 4, the model background is a map
of the United States. There are 4 pressure centers which
can be relocated by dragging them around the map. The
user is able to adjust the resolution of the model by setting
the density of vector values that should be calculated and
displayed (a value from 1 to 16). Additionally, the user can
set the number of threads that are utilized by the application
when performing these calculations (a value from 1 to 12).
When the program runs, the number of calculation points
is determined by the resolution and the wind vector at each
point on the map is computed based on the distance that
point is from the 4 pressure centers. At the completion of
a model run, the application displays the time it took to
compute the final wind map.

While this is a simplistic model for performing such a
calculation, it gives students a good representation of how
something we take for granted on a daily basis (weather
forecasting) is actually performed. We assigned each pair of
students a group of tests to run (some combination of resolu-
tions and thread counts). Computation times were recorded
in a table on the board and then plotted on a graph such
as that shown in Figure 1. Once this was complete, we dis-
cussed the results with the students, having them try to ex-
plain why the improvement in performance leveled off once
we reached 4 threads. After some discussion, we would arrive

http://bit.ly/russfeld_hpc

Figure 5: This code generates a list of 200 random
numbers and then launches the other threads which
do the adding.

at the idea that this was the result of hardware limitations
(we were using computers containing quad core processors)
and that we could potentially achieve even better perfor-
mance by adding additional processing power.

3.2 Building a Summing Algorithm
In the Fall of 2013, this same application was incorporated

into our CS0 course. In previous semesters, the course had
included material and information about HPC, but there
was not an accompanying activity. We took the opportu-
nity to include the simulation activity to further develop
students’ understanding of HPC concepts.

In the first lesson, students learned about computer hard-
ware and how modern computers are designed. This in-
cluded a brief introduction of fixed program and stored pro-
gram computers, and the Von Neumann architecture present
in most modern computers. We also discussed several hard-
ware limitations and bottlenecks of previous hardware de-
signs and how those have been overcome in later designs.

As part of that lesson, we presented the weather simula-
tion as a way for students to see how the hardware present
in a computer affects the performance of programs. As with
the sessions described in Section 3.1, students were divided
into groups and given a set of tests to run using the simula-
tion while recording the elapsed time of each test. The data
was then collected and graphed on the board, and students
were asked to interpret what the data could tell us about
the hardware present in the systems.

For the second lesson, we built upon that foundation by
discussing the future of computing and how we must over-
come the limitations of today’s systems. Specifically, many
computing tasks today are much larger than a single system
can handle, as well as being so complex that they require an
extraordinary amount of CPU processing time to complete.
We then introduced HPC and showed how HPC is already
being used today to solve some of these big problems. Fol-
lowing that, we allowed students to tour Beocat, the HPC
cluster at K-State, to see firsthand what a real HPC cluster
looks like.

After the tour, we introduced a new activity built in Scratch
to help further demonstrate how HPC concepts are applied
in a real computer program. The Scratch activity generated
a random list of numbers and calculated their sum, and stu-

Figure 6: This code repeatedly pulls numbers from
the list and adds them to the global sum until the
list is empty.

dents were given the task of recalculating the sum of the
numbers in the fastest way possible. We encouraged them
to use multiple threads in their calculation, represented in
Scratch as multiple sprites, each performing their own part
of the calculation. As the students worked on that task,
we slowly introduced one way of solving the problem, and
attempted to show how it would operate in the real world.

The new activity worked well, allowing students some time
to work hands-on with simple HPC concepts. This first at-
tempt was rough around the edges. It was lacking many
details that would help show how such a system would per-
form in the real world. For example, due to the way that
Scratch is built, the students never became aware of pitfalls
such as race conditions. As an initial attempt, we saw the
potential in this activity and planned to build upon this the
following semester.

3.3 Fixing the Concurrency Problem
In the Spring of 2014, we decided that we wanted to in-

troduce a more challenging and deeper investigation of par-
allel processing to the introductory students. We wanted to
include the issue of race conditions and show students how
such a problem might be mitigated through the use of a lock-
ing mechanism. To do this, we focused solely on the adding
program similar to the one introduced during the Fall 2013
semester. Figures 5 and 6 show the code we developed for
this project.

Figure 5 shows code which builds a list of 200 random
numbers, restarts an internal Scratch timer and then launches
a number of threads using a broadcast message. Figure 6
shows the code which those threads will follow. Each thread
will pull values from the list and add them to a global ’to-
tal’ variable. When we first implemented this application,
we were surprised that we did not see any errors in the

Figure 7: This output shows program variables and
the differing sums when the race condition occurs.

Figure 8: Modified code including mutex locking
operations.

sum (a race condition never materialized). It turns out that
Scratch is optimized to prevent such problems from occur-
ring. The system assumes that the block of code within a
looping structure is atomic and cannot be interrupted except
at the very end of the loop block [11]. However, wait opera-
tions can be added between these blocks to allow for context
shifts, and the related race conditions. This is true even if
the wait length is set to 0. So, we could now demonstrate er-
rors caused by a race condition, as shown in Figure 7. Note
that the sum of the values computed by the parallel compu-
tation is not the same as the true sum which was computed
as the values were added to the list.

Once the students understood the causes and ramifica-
tions of the concurrency problem, we demonstrated the use
of a mutex lock to solve this problem, as shown in Figure 8.
This, of course, introduced yet another issue. Based on how
we set up the mutex lock, we lose the benefits of parallel
operations and at this point, we challenged the students to
find a way to minimize the problem.

4. RESULTS
Our initial use of this material during the summer of 2013

showed how promising our approach could be. Over 40 high-
school and middle-school girls attended our sessions during
the EXCITE and GROW workshops. Students were given a
survey at the very end of the entire GROW/EXCITE Work-
shop, and 22 of 41 indicated they had an interest in a job
using HPC to solve problems while 27 of 37 felt they were
capable of learning to write computer programs.

Our experience during the Fall 2013 semester within the
CS0 course was similarly positive. Students displayed in-
terest in learning about how modern computers function
and how larger problems can be tackled using HPC. The
majority of the students were able to quickly understand

Question p value effect

Q1: I can learn how to write computer
programs.

0.4531 0.141

Q2: I enjoy writing computer pro-
grams.

< 0.01 0.461

Q3: I would enjoy a job that involves
using multiple computers working to-
gether to solve science problems.

0.024 0.461

Q4: I believe my experience learning
Scratch will help me when I learn other
programming languages in the future.

< 0.01 0.331

Q5: I understand what parallel pro-
gramming means.

< 0.01 0.745

Q6: I would like to learn more about
parallel programming.

0.383 0.118

Q7: I would be interested in perform-
ing research projects that involved us-
ing parallel programming.

< 0.01 0.416

Q8: Parallel programming is too diffi-
cult for me to understand.

0.038 0.267

Q9: I could apply parallel program-
ming to other problems in Scratch.

< 0.01 0.696

Table 1: Statistical summary of survey items calcu-
lated using Wilcoxon signed-rank test (n=61).

the concepts presented in the weather simulation activity,
and several of them experimented with pushing the perfor-
mance boundaries of the application by running it with var-
ious other settings other than the ones they were directed
to test.

Additionally, students were interested in the new multi -
threaded sum activity. Students discussed ways that they
would go about solving the problem even if they were not
sure exactly how to build them, and by the end of the session
several groups were expanding upon their working solutions
to see how many threads they could use without crashing the
program. Overall, this second iteration of the material gave
us a very good look at how well the program and lessons
can be adapted for a college-level course, and we were very
optimistic about how well future lessons would be received.

Given the positive results experienced during the first two
trials with this material, we approached the Spring 2014
semester with a plan to more closely study the effects the
material was having with students. Students were given the
option to participate in a survey-based study (they were
given the opportunity to turn in a blank survey if they chose
not to participate). Surveys were given before and after the
lessons covering the HPC material. As part of the survey,
students were asked to respond to various statements (shown
in Table 1) using the 5 pt. scale shown here:

• Agree
• Somewhat agree
• I don’t know
• Somewhat disagree
• Disagree

The statements included in the survey, shown in Table 1,
covered student interest in programming as well as interest

Agree Neutral Disagree

pre post pre post pre post

Q1: 61 60 0 0 0 1

Q2: 51 58 9 2 1 1

Q3: 55 55 2 3 4 2

Q4: 48 53 1 0 12 8

Q5: 27 56 12 2 22 3

Q6: 57 55 3 2 1 4

Q7: 44 53 11 2 6 6

Q8: 7 11 19 3 35 47

Q9: 25 55 32 3 4 3

Table 2: Summary of survey results with
agree/disagree responses aggregated.

and self-efficacy as it pertains to parallel computing con-
cepts.

The results of these surveys are shown in Figure 9, and the
statistical analysis is given in Table 1. We have also included
the numerical results showing the number of students that
agreed, were neutral or disagreed with each statement in
Table 2. In this table, we aggregate ’Somewhat agree’ with
’Agree,’ and ’Somewhat disagree’ with ’disagree.’ Of partic-
ular note is the increase in agreement for statements 5 and 9.
These responses show the growth in student confidence that
occurred over the course of the lessons. Other statements
show similar, although not as dramatic, improvements.

Questions 1 and 6 displayed a decrease in agreeing stu-
dents by 1 and 2 students respectively. However, these re-
sults were found to be statistically insignificant when checked
using the Wilcoxon signed-rank test (p values less than 0.05
are considered to be significant). The pre-treatment results
for both of these statements started out with a high per-
centage (greater than 90%) of students agreeing, so there
was little room for a significant positive change to either of
these statements.

Overall, the results were outstanding, with greater than
80% of the students agreeing to all of the statements ex-
cept statement 8 in the post surveys. Note that statement
8 is “Parallel programming is too difficult for me to under-
stand,” so we are wanting a negative response for this state-
ment. Thus, the inverted responses to this statement denote
a positive result. The results from these surveys given dur-
ing the Spring 2014 semester match our observations of the
interest and understanding that students had while partic-
ipating in these activities in the classroom during the Fall
2013 semester.

5. SUMMARY
Using Scratch, we have discovered a method to easily

present HPC concepts to students with little or no pro-
gramming background in a meaningful way. Our experiences
show that students over a wide range of ages (middle school
to college freshmen) are able to comprehend these ideas and
survey results show that their interest and self-efficacy have

Figure 9: Results from pre and post surveys. We
were especially interested in the results from state-
ments 5 and 9 (statements are listed in Table 1),
which both had over 100% growth in the number of
students who agree or somewhat agree.

grown as a result. The number of students who felt they un-
derstand what parallel programming is and who think they
can apply parallel programming to other problems doubled
in our introductory course.

In the future, we plan to expand the scope of these simula-
tions to include other subject areas within computer science.
One such area of interest is bio-informatics. A proposed sim-
ulation would display several organisms of the same species
with different traits present. Students would then analyze
the genetic makeup of the organism and attempt to deduce
which traits were caused by different parts of the makeup.

In addition, we plan to enhance the activities used in
the introduction to computing science class to include more
HPC concepts such as a work queue or producer/consumer
relationships. We would also like to evaluate how well these
Scratch-based activities could be used to introduce more ad-
vanced HPC concepts to juniors and seniors in an architec-
ture or operating systems course.

References
[1] K-State Office for the Advancement of Women in

Science and Engineering. http://www.k-state.edu/

kawse/.

http://www.k-state.edu/kawse/
http://www.k-state.edu/kawse/

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud
Computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[3] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
View of the Parallel Computing Landscape. Commun.
ACM, 52(10):56–67, Oct. 2009.

[4] R. Brown and E. Shoop. Modules in Community: In-
jecting More Parallelism into Computer Science Cur-
ricula. In Proceedings of the 42nd ACM technical sym-
posium on Computer science education, pages 447–452.
ACM, 2011.

[5] K. B. Bruce, A. Danyluk, and T. Murtagh. Introducing
Concurrency in CS 1. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 224–228, New York, NY, USA, 2010.
ACM.

[6] L. Carter. Why students with an apparent aptitude for
computer science don’t choose to major in computer
science. SIGCSE Bull., 38(1):27–31, Mar. 2006.

[7] D. J. Ernst and D. E. Stevenson. Concurrent CS:
Preparing Students for a Multicore World. SIGCSE
Bull., 40(3):230–234, June 2008.

[8] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover.
GPU Cluster for High Performance Computing. In Pro-
ceedings of the 2004 ACM/IEEE conference on Super-
computing, page 47. IEEE Computer Society, 2004.

[9] R. Feldhausen, S. Bell, and D. Andresen. Engaging
Students in STEM Fields through High Performance
Computing., 2013. Poster presented at ASEE-Midwest
Section Annual Conference, Sept 18, Salina, KS.

[10] Kansas State University Computing and Information
Sciences. Beocat. http://beocat.cis.ksu.edu/.

[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. ACM Transactions on Computing Edu-
cation (TOCE), 2010.

[12] MIT. Scratch, MIT Lifelong Kindergarten. http://

scratch.mit.edu, 2013.

[13] C. H. Nevison. Parallel Computing in the Undergrad-
uate Curriculum. Computer, 28(12):51–56, 1995.

[14] NSF. NSF Women, Minorities and Persons with Dis-
abilities in Science and Engineering. http://www.nsf.

gov/statistics/wmpd/2013/.

[15] J. M. Wing. Computational Thinking. In VL/HCC,
page 3, 2011.

http://beocat.cis.ksu.edu/
http://scratch.mit.edu
http://scratch.mit.edu
http://www.nsf.gov/statistics/wmpd/2013/
http://www.nsf.gov/statistics/wmpd/2013/

	Introduction
	Background
	GROW and EXCITE Programs
	Introductory Computer Science Course
	Scratch

	Methodology
	Measuring Wind Model Performance
	Building a Summing Algorithm
	Fixing the Concurrency Problem

	Results
	Summary

