
Jade: An Efficient Energy-aware Computation Offloading System
with Heterogeneous Network Interface Bonding for Ad-hoc Net-

worked Mobile Devices
Hao Qian, Daniel Andresen

Department of Computing and Information Sciences
Kansas State University

Manhattan, USA
{hqian, dan}@ksu.edu

 Abstract—Mobile device users consistently desire faster results
and longer battery life, which is frequently accomplished by of-
floading computation to cloud-based servers. However, in com-
mon cases (Internet connectivity slow/unavailable, priva-
cy/security issues), users have multiple devices with heterogene-
ous battery and computational capabilities independent of the
cloud. Android provides mechanisms for creating mobile code,
but lacks a native scheduling mechanism for determining where
code should be executed. In this paper we present the results of
an investigation into adding sophisticated scheduling capabilities
to Android apps, which provides scheduling balancing energy
and performance across networked mobile devices. Jade moni-
tors and adapts to workload variation, communication costs, and
energy status in a distributed ad-hoc network of Android mobile
devices for supporting distributed computation. We show how
the two goals can be integrated, and present several algorithms
indicating a major advantage (over 75% improvement in energy
use) can be achieved through the use of dynamic scheduling in-
formation for remote computational devices. We provide a de-
tailed discussion of our system architecture and implementation,
and briefly summarize the experimental results which have been
achieved.

Keywords—distributed computing; ad-hoc networking; scheduling;
mobile computing; multiple-radio systems

I. Introduction
 Mobile devices (e.g., smart phones and tablets) have be-
come a necessity for people because they enable us to perform
a wide variety of daily activities (e.g., video calls, emails,
gaming, social networking, navigation, etc.). These devices
typically are equipped with a relatively powerful mobile pro-
cessor, a rich set of sensors and a substantial amount of
memory. It allows previously unimaginable applications to be
developed by integrating many sensors (e.g., motion sensors,
position sensors and environmental sensors).
 Battery life has become one of the biggest obstacles for fu-
ture growth of mobile devices. The energy needs of mobile
devices are growing fast as processors are getting faster,
screens are getting bigger and sharper, and more sensors are
installed. Unfortunately, the advances in battery capacity have
not kept up with the growing energy needs of mobile devices.
 One popular technique to simultaneously reduce the energy
consumption and increase the performance of mobile devices
is computation offloading: application can reduce energy con-

sumption by delegating code execution to other devices. Tra-
ditionally, computations are offloaded to remote servers which
are resource-rich.
 Nowadays, it is common for people to have more than one
mobile device, and they carry those devices at the same time
(e.g., smart phone in the pocket and tablet in the briefcase).
These devices can be networked directly (e.g., Wi-Fi and
Bluetooth) without an intermediate access point. Sometimes
offloading computation to these networked devices is prefera-
ble than offloading computation to the cloud. One example is
when people are using one device while the other device is
charging. Offloading computation to the charging device
could extend the battery life of the un-charged device. Another
example is when the Internet connection is unavailable or not
secure, offloading computation to locally networked devices is
a good option.
 In this paper, we present Jade, a computation offloading
system for wireless ad-hoc networked mobile devices. Jade is
targeted at mobile devices running the Android operating sys-
tem. It minimizes energy consumption of applications through
fine-grained code offloading while reducing the burden on ap-
plication developers. Jade also reduces the energy consump-
tion of network interfaces by dynamically choosing the most
energy efficient interface (Wi-Fi/Bluetooth) for data transfer.
Jade achieves these benefits by providing: 1) the runtime en-
gine which supports computation offloading between wireless
ad-hoc connected devices. By gathering the information about
application and devices, the runtime engine can decide if code
should run locally or remotely (offloaded); and 2) the simple
programming model which helps developers to create applica-
tions that have the ability to offload computation.
 We summarize our contributions here as follows:

We present a scheduling algorithm which incorpo-
rates energy awareness and performance for a heter-
ogeneous local cluster of devices.
We present the design, implementation and evalua-
tion of a complete system. Jade combines many fea-
tures of the popular Android platform.
We show that applications which support computa-
tion offloading can be implemented without heavy
code modification. Android provides a natural sepa-
ration between user interactive activities and back-
ground computational services. By following the
similar concept, the Jade programming model ena-

978-1-4799-5604-3/14/$31.00 copyright 2014 IEEE
SNPD 2014, June 30-July 2, 2014, Las Vegas, USA

bles developers to write offloadable code with little
effort.
We evaluate the system with two applications. The
result shows that computation offloading is an effec-
tive method for wireless ad-hoc networked devices.
Jade can reduce up to 86% of energy consumption on
mobile devices we tested, while maintain-
ing/improving the performance of applications.

II. Jade Design
 In this section, we present the high-level overview of
Jade’s architecture and its programming model in order to
show how they all integrate into one system for distributed ex-
ecution of mobile applications.
 For mobile applications with heavy computation needs,
computation offloading is a helpful technique to reduce the
energy consumption and enhance the performance. However,
it requires additional efforts and skills to develop applications
with computation offloading ability, and there is no mature
framework or tool for mobile application developers. We have
designed Jade to minimize this effort by:

offering the runtime engine which provides services
for wireless communication, device profiling, pro-
gram profiling and computation offloading. Concep-
tually, the Jade runtime engine automatically trans-
forms computation on one mobile device into a dis-
tributed execution optimized for wireless connection,
battery usage and capabilities of devices.
providing the simple programming model for devel-
oping mobile applications which support computa-
tion offloading. The programming model includes a
set of APIs for applications to interact with the Jade
runtime engine.
integrating with existing development tools that are
familiar to developers.

 In Jade, mobile applications contain offloadable code
which can be offloaded to other devices (Figure 1). The device
hosting the mobile application is called the client. The device
which receives and executes the offloaded code is called the
server. In Jade, if the code is executed on the client (i.e., code
is not offloaded), we call it local execution. In contrast, if the
code is executed on the server (i.e., code is offloaded), we call
it remote execution.

Figure 1: Computation offloading by Jade. In Jade, applications contain of-
floadable code which can be executed locally or remotely. Jade runtime en-
gine decides where to execute the code and initiates the distributed execution.

A. Jade Runtime Engine
 The goal of Jade is to maximize the benefits of computa-
tion offloading for mobile devices and minimize the burden on
developers to develop such applications. To develop mobile
applications which support computation offloading, there are
several tasks we need to handle:

Communication. In order to offload code from the
client to the server, the applications should have the
ability to 1) connect to other devices; 2) send data be-
tween devices; 3) coordinate with other devices for
distributed execution; 4) track status of remote com-
putation; 5) restore execution if unexpected errors
happen (e.g., wireless connection lost, remote execu-
tion failure); and 6) exchange and maintain infor-
mation related to connected devices (e.g. connection
speed, CPU usage, battery level).
Profiling. In order to make correct offloading deci-
sion, a profiler is needed which performs device and
program profiling. Device profiling collects infor-
mation about device’s status, e.g., wireless connec-
tion, CPU usage, battery level. Program profiling col-
lects information about applications, e.g., execution
time, memory usage, size of data.
Optimization. The purpose of optimization is to de-
cide if computation is suitable for offloading, so as to
maximize application’s energy savings and perfor-
mance.

 These tasks are common for applications which support
computation offloading. But it is time consuming to imple-
ment these tasks. Sometimes implementing these tasks is even
harder than implementing the application itself. Jade runtime
engine handles the above tasks for developers. It consists of
components shown in Figure 2. On the mobile device, Jade
runtime engine runs in the background as a group of services.
Developers can utilize its various functionalities by using the
easy-to-use APIs provided by the Jade programming model.

Figure 2: High level view of the Jade runtime engine.

 In section III, we describe in detail the mechanisms for the
profiler, the optimizer and the communication manager, re-
spectively.

B. Jade Programming Model
 In addition to the Jade runtime engine, one of the key con-
tributions of Jade is the programming model. The program-
ming model is offered to developers to help build applications
which support computation offloading. It is the interface be-

tween mobile applications and the Jade runtime engine. Any
application developed using the programming model can in-
teract with the Jade runtime engine and harness the power of
computation offloading.
 We provide the details of the Jade programming model in
section III.

C. Wi-Fi and Bluetooth Bonding
 Today, most mobile devices are equipped with multiple
network interfaces (e.g., Wi-Fi, Bluetooth and cellular inter-
face). These interfaces have different characteristics (e.g.,
range, throughput and power). Each interface has its ad-
vantage and disadvantage given different applications. Ideally,
we want to combine these interfaces and leverage strength of
them in order to improve the application performance and re-
duce energy consumption.
 Wi-Fi and Bluetooth are the most typical network interfac-
es found in today’s mobile devices. Wi-Fi is known for its
high throughput, long range and low energy per bit transmis-
sion cost. Bluetooth is primarily a cable-replacement technol-
ogy for battery constrained mobile devices. It provides low
bandwidth and covers a shorter range. The downside of Wi-Fi
is the high power consumption for wake up and connection
maintenance. In active state, the power of Wi-Fi is approxi-
mately 890mW, compared to only 120mW for Bluetooth [3].
For mobile devices with limited battery capacity, Wi-Fi has
been shown to account for a significant portion (up to 50%) of
the total energy consumption [3].
 The 802.11 standard defines a Power-Saving Mode (PSM),
aimed at reducing the energy consumption of Wi-Fi. In PSM,
the typical power consumption of Wi-Fi is effectively reduced
to 250mW. In contrast, Bluetooth is optimized to be extremely
low-power in idle state, typically consuming on the order of
1mW [3].
 Given the different and often complementary characteris-
tics of both network interfaces, it is advantageous to combine
Wi-Fi and Bluetooth together, so we can utilize their strength.
In Jade, we implement a component in the communication
manager called Wi-Fi and Bluetooth Bonding (WBB). The job
of WBB is to decide which interface (Wi-Fi/Bluetooth) will be
used for data transfer according to different data transfer re-
quest of applications. The goal is to reduce the energy con-
sumption of network interfaces.

III. Implementation
 In this section we will highlight the important implementa-
tion details of Jade. Sections A, B, C and D provide the details
of the key components in the Jade runtime engine. Section E
shows the details of the Jade programming model.

A. Profiler
 At runtime, before the offloadable code is invoked, the
Jade optimizer determines whether the code should run locally
or remotely. This decision is based on the information provid-
ed by the profiler. The profiler collects the following infor-
mation: 1) the device’s status (i.e., charging or not, battery
level, CPU load); 2) wireless connection status, such as con-

nected or not, the bandwidth; and 3) characteristics of the of-
floadable code, such as running time and size. The profiler
measures the code characteristics at initialization, and it con-
tinuously monitors the device and network characteristics, be-
cause for mobile devices, these can often change (e.g., wire-
less connection lost, battery reaches low level). The optimizer
may make wrong decision on whether the code should be of-
floaded based on a stale measurement. The current implemen-
tation of the Jade profiler does not implement automatic pro-
gram profiling. In the rest of this section, we provide the im-
plementation details of Jade’s techniques for device, program,
and networking profiling.

 1) Program Profiling
 We use the DDMS [7] debugging tool provided by the An-
droid Development Tools (ADT) [8] to profile applications.
DDMS is a powerful tool which enables us to 1) view heap
usage for a process; 2) track memory allocation of objects; and
3) profile methods of object. To measure energy consumption
of applications, we use PowerTutor [9] and Trepn Plug-in for
Eclipse [10]. PowerTutor is an application for Android phones
that displays the power consumed by major system compo-
nents such as CPU, network interface, display, and GPS re-
ceiver and different applications. It uses a power consumption
model which provides power consumption estimates within
5% of actual values. Trepn plug-in for Eclipse is a power pro-
filing tool developed by Qualcomm for Android application
developers, it is designed to allow developers to easily collect
performance data from any application running on a mobile
device, analyze the resulting graphs in the Eclipse IDE and
modify code to build power-efficient applications.
 The offloadable code is invoked multiple times, each time
with a randomly chosen input. For each execution, we meas-
ure: 1) runtime duration; 2) the size of data needs to be sent to
the server (i.e., the size of the code, the size of data referenced
by the code and the size of data required to be returned to the
client once execution is complete); and 3) energy consumption
of running the offloadable code. The final result is the average
of multiple invocations.

 2) Device Profiling
 At runtime, the profiler keeps monitoring status of the de-
vice. Android uses broadcasts to notify applications if device
status changes. Applications can register broadcast listeners to
receive these broadcasts. The profiler registers broadcast lis-
teners to receive broadcasts related to 1) battery (i.e., battery
level, charging or not); and 2) wireless connection (i.e., Wi-Fi
turned on/off).
 Due to the nature of mobile devices, the status of wireless
connection could change frequently (e.g., user moves to other
location). Fresh information about wireless connection is criti-
cal for the optimizer to make correct offloading decision. Sim-
ilar to MAUI [1], we use a simple method to measure the
wireless link: Each time the Jade runtime engine offloads
code, the profiler measures the transfer duration to obtain a
more recent average throughput. This simple approach allows
the profiler to take into account both the latency and band-
width characteristics of the network. We also build a simple

energy cost model of wireless transfer using this approach: we
send some synthetic data from the client to the server, varying
the size of the data, and we measure the energy consumption
of each transfer. This model lets us predict the energy con-
sumption of transferring data as a function of the size of the
data.

B. Optimizer
 The purpose of the Jade optimizer is to pick which of-
floadable code to offload to the server, so as to find an of-
floading strategy that minimizes the client’s energy consump-
tion. The optimizer makes the offloading decision by solving
an optimization problem using information collected by the
profiler as input.
 It requires a global view of the application and devices to
decide where to execute the offloadable code. The optimizer
can make adaptive decision based on the status of devices. For
example: 1) if one device (client or server) is charging, the op-
timizer will try to offload as many computation as possible to
that device in which case it is advantageous in terms of saving
battery; 2) if the battery level of the server is low, the optimiz-
er will send less code to the server (similarly if the wireless
connection is bad); and 3) if the battery level of the client is
low, more code will be offloaded to the server. The goal is to
reduce as much energy consumption as possible on the client
without unduly burdening the battery on the server.
 The characteristics of offloadable code also determine
where it should be executed. The code should be offloaded on-
ly if the energy consumed to execute it locally is greater than
the energy consumed to transfer it. Code which performs
heavy computation on small data falls into this category. For
some code, the cost of transfer outpaces the cost of local exe-
cution (e.g., light weight computation on big data), they
should not be offloaded.
 Based on the information provided by the profiler, the op-
timizer finds the best offloading strategy by solving the fol-
lowing problem. represents the set of offloadable code in the
application. For each offloadable code , is the energy
consumed to execute it locally, is the energy consumed to
transfer between the client and the server. is the execution
time of on the client, is the execution time of on the
server, is the transfer time of . is the indicator variable: = 0 if is executed locally, = 1 if is executed remotely.
The optimizer needs to find the assignment for such that:

maximizes × ()
guarantees (1) × + × + ×

 The first formula is the total energy savings. The second
constraint stipulates that the total execution time is within .
can be configured by developers according to different re-
quirements.
 As explained in section E, the Jade programming model
requires that every offloadable code is independent of each
other. This further simplifies the above problem. For each of-
floadable code , the optimizer only needs to solve the follow-
ing inequation: > 0

+ is the energy saving if is executed remotely.
should be considered for offloading only when > . Sim-
ilarly, the second inequation guarantees that time difference
between remote execution and local execution is not greater
than .

C. Communication Manager
 Computation offloading is handled by the communication
manager. The communication manager is responsible for: 1)
code manipulation (i.e., code transfer, code invocation); and 2)
device coordination.
 After the optimizer decides an offloadable code should be
offloaded, the communication manager will perform the fol-
lowing tasks:

1. looks up the server table for available server (if no
server available, then code is executed locally).

2. records information of the code in the offloaded code
table, the purpose of the table is to track the status of
the offloaded code.

3. offloads the code to the server.
4. the communication manager of the server receives

the code, and executes it in a new thread in the task
pool.

5. The communication manager of the server sends the
result back to the client after the execution is com-
plete.

6. the communication manager of the client receives the
code and updates its information in the offloaded
code table.

 In case of remote execution failure, the communication
manager has mechanisms to guarantee the correctness of the
application. For example, if wireless connection is lost during
the remote execution, the communication manager of the cli-
ent will re-execute the code locally, and the communication
manager of the server will abandon the failed execution. If the
returned code shows its result as failed, it will also be re-
executed on the client as well.

D. Wi-Fi and Bluetooth Bonding
 Different applications have different patterns of data trans-
fer. For example, video streaming applications need to keep
receiving a lot of data in high frequency from the server.
Weather applications transfer a small amount of data with low
frequency (e.g., 10 minutes, 30 minutes or 1 hour). For big da-
ta transfers (e.g., image, video), Wi-Fi is the best choice, be-
cause it provides high throughput and energy efficiency. But
for small and infrequent data transfer (e.g., transfer 1KB data
every 10 seconds), Wi-Fi may not be the best choice. As
shown in previous section, with the implementation of PSM,
the power of Wi-Fi can be reduced effectively in idle state.
But Wi-Fi has high power consumption for wake up and con-
nection maintenance. For small and infrequent data transfer,
the wake up cost for Wi-Fi is high, so Bluetooth is a better
choice than Wi-Fi.

Figure 3: Wi-Fi and Bluetooth Bonding implementation

 In Jade, we implement Wi-Fi and Bluetooth Bonding
(WBB). WBB is adaptive to different data transfer pattern of
applications. It can dynamically choose the suitable network
interface (Wi-Fi/Bluetooth) for different data transfer request
(Figure 3).
 In WBB, the data to be transferred is put into a buffer. The
size of the buffer is represented as S, down threshold is D and
up threshold is U. The constraint is 0 < .
 S, D and U can be configured by developers, for example,
S is 500KB, D is 50KB and U is 350KB. At runtime, the buff-
er acts like a queue. The data to be transferred is put into the
buffer from one end, then retrieved from the other end and fi-
nally sent by Wi-Fi/Bluetooth. WBB keeps monitoring the
buffer and dynamically switches between Wi-Fi and Bluetooth
according to the size of data in the buffer (Figure 4).

Figure 4: WBB monitors the buffer and choose suitable network interface for
data transfer based on the size of data in the buffer.

 This design guarantees that by properly configuring S, D
and U, WBB can always make the desired choice regardless of
the data production rate and the size of data. For example, if a
high quality image needs to be transferred, WBB will choose
Wi-Fi, because the size of the image can easily exceed the up
threshold. Another example is an application which sends
small data at high frequency. Due to the high data production
rate, the size of data in the buffer will soon exceeds the up
threshold, so Wi-Fi will be used to transfer data. In contrast, if
small data is generated at low frequency, the size of data in the
buffer could remain smaller than down threshold, so Bluetooth
will be used for data transfer and Wi-Fi is kept in PSM.
E. Jade Programming Model
 When designing applications which support code offload-
ing, the application needs to be partitioned into sub-parts
which can be offloaded to the server. There are different levels

at which to partition an application (e.g., class, method, pro-
cess, thread). In Jade, an application is partitioned at the class
level. Developers can produce an initial partition of their ap-
plications with minimal effort by using the Jade programming
model. A class simply needs to implement the RemotableTask
interface if it should be considered for offloading by the Jade
runtime engine.
 In Jade, a class which implements the RemotableTask in-
terface is called remotable class. An instance (object) of
remotable class is called remotable object (i.e., offloadable
code mentioned in previous sections). A remotable object can
be executed on the client (locally) or on the server (remotely).
An application developed using the Jade programming model
is called Jade compatible application. At runtime, a Jade com-
patible application contains remotable objects which can be
executed locally or remotely.
 Some types of code must be executed locally, if a class
contains the following code, it should not be considered for
offloading:

code that creates the user interface of the application.
code that handles user interaction (e.g., callback
method for clicking a button).
code that access special hardware of the client which
could be unavailable on the server (e.g., some smart
phones are equipped with temperature sensor but
some tablets are not).
code that is not suitable for re-execution (e.g., code
which perform online transaction) [1].

 Our goal of implementing the RemotableTask interface is
that developers don’t need to guess if a class is suitable for of-
floading (in terms of energy consumption and performance).
Once a class doesn’t contain the above code, it can implement
the RemotableTask interface.
 The RemotableTask interface is the key construct in the
Jade programming model, it defines the following methods
which will be called by the Jade runtime engine in sequence:

preExecution, which is used to do some preparations
before the remotable object performs the main task,
for instance, initializing the data.
loadData, which is used to load data from the file
system of the client. If the remotable object is run-
ning on the server, invoking this method will cause
the client to read data from the file system and send it
to the server.
execution, which is invoked to perform the main task.
updateData, which is the counterpart of loadData.
After the task finishes, update data in the file system.
If the remotable object is running on the server, the
data will be sent back to the client to update its file
system.
postExecution, which is the counterpart of preExecu-
tion. If there are any things need to be done after the
task completes (e.g., disconnect with database, up-
date log and send notification to user), we do it here.

 By implementing the RemotableTask interface, the life of a
remotable object can be divided into three stages: 1) before
execution; 2) execution; and 3) after execution. This division

is natural because it matches the steps of a general computa-
tion: 1) preparation (e.g., load data, connect to network); 2)
execution, which performs computation on the data; and 3)
update, which wraps up the execution (e.g., update database,
notify user).
 All remotable objects of an application will be considered
for offloading by the Jade optimizer, if a remotable object is
chosen for offloading, the Jade runtime engine will handle its
remote execution following the steps shown in Figure 5.

Figure 5: Life-cycle of remotable object which is offloaded to the server.

 Using Jade programming model, the application develop-
ment is intuitive. Figure 6 shows an example. Imagine we
have an application which collects information entered by the
user (e.g., name, phone number, address and company), veri-
fies the information, and finally saves the information to the
database on a remote server. The application could contain
three steps. Step three is a good candidate for computation of-
floading, especially when the database operation is heavy. In
the Jade programming model, we create a remotable class
(UpdateInfo) for step three. The pseudocode looks like:
class UpdateInfo implements RemotableTask{
 preExecution(){
 open database connection;
 }
 loadData(){
 do nothing;
 }
 execution(){
 if new user
 insert user info into database;
 else
 update user info;
 }
 updateData(){
 do nothing;
 }
 postExecution(){
 close database connection;
 }
}

Figure 6: An application which contains task that could be executed remotely.

 In Jade, a remotable class should perform task in-
dependently. The advantage of this design includes: 1) avoid
the complexity introduced by dependencies when the Jade op-
timizer makes the offloading decision. In fact, the algorithm of
the Jade optimizer is light weight, so it consumes less energy;
and 2) the application benefits from parallel execution. Since
each remotable object performs independent task, they can be
executed simultaneously locally or remotely, which greatly
enhances the performance of the application.

IV. Evaluation
 In this section we evaluate Jade’s ability to improve energy
consumption and performance of mobile applications. We im-
plemented two applications that contain heavy computation
for the evaluation.
 Our first application is FaceDetection. It asks user to
choose some pictures from the photo gallery, then detects fac-
es appearing in these pictures, and finally highlights them by
putting a rectangle around each face. We build FaceDetection
using the Jade programming model and the face detection li-
brary in Android. The code that detects faces is implemented
as a remotable class, so it can be offloaded.
 The second application is TextSearch, which searches text
files against a library of 1000 key words. It counts how many
times each key word appears in the text files. The search algo-
rithm is implemented in a remotable class. At runtime, the text
files can be searched locally or remotely.
 We used an HTC One smart phone as the client. HTC one
is a high end smart phone equipped with Qualcomm Snap-
dragon 600 quad-core 1.7GHz CPU and 2GB RAM. For the
server, we use a Samsung Galaxy Tab 3 tablet and a Samsung
Galaxy S4 smart phone. Galaxy Tab 3 is equipped with Intel
Atom Z2560 dual-core 1.6GHz processor and 1GB RAM.
Galaxy S4 has 1.9GHz quad core processor and 2GB RAM.
All devices run Android 4.2.2. The client and the servers are
connected by Wi-Fi and Bluetooth. We measure the energy
consumption of the two applications on the client by the Trepn
Plug-in for Eclipse and the PowerTutor.
 At runtime, Jade can dynamically change its offloading
strategy according to the battery level of devices. For exam-
ple, if the battery level of the client is low and the server is
charging, Jade will offload as much computation as possible to
the server (aggressive mode). If the battery level of the server
is low, Jade will offload less computation to the server to
avoid draining its battery (moderate mode). In the following
tests, the battery level of the client is kept below 20%, and the
server is charged, so Jade works in aggressive mode.
 We vary the number of servers to see if it has impact on the
performance of applications. For tests with one server, we use
the Galaxy Tab 3 as single server. For tests with two servers,

we add the Galaxy S4 as the second server. To see the impact
of WBB on the energy consumption, we do each test with
WBB enabled and disabled. When WBB is disabled, devices
are connected with both Wi-Fi and Bluetooth, but only Wi-Fi
is used for data transfer.

Figure 7: Energy consumption of FaceDetection.

Figure 8: Execution time of FaceDetection.

Figure 9: Energy consumption of TextSearch.

Figure 10: Execution time of TextSearch.

 To evaluate how much energy Jade saves for FaceDetec-
tion, we execute it on the client with Jade enabled and disa-
bled, and varying the number of pictures to detect. We only
use pictures smaller than 200KB. The results are shown in
Figure 7 and Figure 8.
 We use similar method to evaluate TextSearch: execute it
with Jade enabled and disabled, and varying the total size of
text files that are searched. Each text file is 50KB. The energy
consumption and execution time are shown in Figure 9 and
10.
 From the tests, we can see that Jade saves 74% of energy
for FaceDetection and 86% of energy for TextSearch. For ex-
ecution time, when there is only one server, execution without
Jade is a little faster than execution with Jade: there is 3.7%
and 3% slowdown for FaceDetection and TextSearch. This is
due to two reasons: 1) the server is less powerful than the cli-
ent (CPU and memory); and 2) transfer overhead. When there
are two servers, the performance improves: Jade reduces 43%
and 48% of execution time for FaceDetection and TextSearch.
 For FaceDetection, WBB does not reduce energy consump-
tion compared with Wi-Fi only mode. This is because each
remotable object contains an image, its size exceeds the up
threshold of the buffer, so Bluetooth is never used for data
transfer. For TextSearch, the application send small data
(50KB per file) at long interval, so WBB effectively reduced
10% more energy compared with Wi-Fi only mode.
 WBB keeps monitoring the buffer, and data needs to be
stored in the buffer before transfer. This introduces overhead,
so for both applications, the execution time with WBB is
longer than Wi-Fi only mode, the execution time increased at
most 10%.
 The results demonstrate that Jade can effectively reduce
battery consumption of applications while improving the per-
formance. It also shows that WBB can dynamically choose
suitable network interfaces. For applications which send small
piece of data at low frequency, WBB can further reduce the
energy consumption for applications.

V. Related Work
 Mobile devices have limited resources such as battery ca-
pacity, storage and processor performance. Computation of-
floading is an effective method to alleviate these restrictions
by sending heavy computations to resourceful servers and re-
ceiving the results from these servers. Many issues related to
computation offloading have been investigated in the past
decade: making offloading feasible, making offloading deci-
sions, and developing offloading infrastructures.
 Jade is built upon previous research done in program parti-
tioning, code offloading, and remote execution. In this section,
we give an overview of what has been proposed by these re-
searches and how they relate to Jade.
 Cuervo et al. proposed MAUI [1], a system that enables
energy-aware offloading of mobile code to the infrastructure.
MAUI enables developers to produce an initial partitioning of
their applications by annotating methods and/or classes as
remotable. At runtime, MAUI solver decides which remotable
methods should execute locally and which should execute re-

motely. Unlike MAUI, Jade provides the programming model
which enables developers to create remotable object. This has
one significant benefit: the profiling and optimization over-
head is low. Because In Jade, each remotable object is an in-
dependent unit performing some tasks, for the optimizer, it on-
ly needs to decide if a remotable object should be offloaded
regardless of the other code of the application.
 Chun et al. proposed CloneCloud [2], an application parti-
tioner and execution runtime that enables unmodified mobile
applications running in an application-level virtual machine to
seamlessly offload part of their execution from mobile devices
onto device clones operating in a computational cloud. In
CloneCloud, to offload computation, threads need to be
paused, all states of the threads need to be transferred to the
server, and finally threads resume on the server. The offload-
ing is expensive, especially when the client and the server are
both resource constraint mobile devices. In contrast, code of-
floading in Jade is lightweight. Remotable objects are serial-
ized, transferred and deserialized, the overhead is much lower
than thread migration.

VI. Future Work
 In our future work we will improve the Jade profiler by
providing automatic application profiling. This will further re-
duce the burden on application developers. We will also study
the impact of automatic profiling on the effectiveness of Jade,
since it introduces more overhead.

VII. Conclusion
 In this paper, we have presented Jade, a system which ena-
bles computation offloading for wireless ad-hoc networked
mobile devices. Jade can effectively reduce the energy con-
sumption of mobile devices (over 75% in our examples), and
dynamically change its offloading strategy according to the
status of devices.

 We have evaluated Jade with two applications, a face de-
tection application and a text search application. The result
shows that Jade can reduce the energy consumption effective-
ly for both applications while maintaining/improving the per-
formance.

References
[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making smartphones last longer
with code offload. In MobiSys, 2010.
[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti. CloneCloud:
Elastic Execution between Mobile Device and Cloud. In ACM Eu-
roSys, 2011.
[3] T. Pering, Y. Agarwal, R. Gupta, R. Want. CoolSpots: Reducing
the Power Consumption of Wireless Mobile Devices with Multiple
Radio Interfaces. In Proceedings of the 4th international conference
on Mobile systems, applications and services, 2006.
[4] P. Rong and M. Pedram. Extending the Lifetime of a Network of
Battery-Powered Mobile Devices by Remote Processing: A Markov-
ian Decision-based Approach. In the 40th annual Design Automation
Conference, 2003.
[5] S. Gurun C. Krintz and R. Wolski. NWSLite: A Light-Weight
Prediction Utility for Mobile Devices. In 2nd international confer-
ence on Mobile systems, applications, and services, 2004.
[6] C. Wang and Z. Li. Parametric Analysis for Adaptive Computa-
tion Offloading. In ACM SIGPLAN 2004 conference on Program-
ming language design and implementation, 2004.
[7] Dalvik Debug Monitor Server (DDMS),
http://developer.android.com/tools/debugging/ddms.html, 2014.
[8] Android Developer Tools.
http://developer.android.com/tools/index.html, 2014.
[9] PowerTutor. http://powertutor.org/, 2014.
Offloading Decisions. In IEEE International Symposium on Parallel
and Distributed Processing, 2008.
[10] Trepn Plug-in for Eclipse.
https://developer.qualcomm.com/mobile-development/increase-app-
performance/trepn-plug-eclipse, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

