
LYE: a high-performance caching SOAP implementation

Daniel Andresen∗, David Sexton, Kiran Devaram, Venkatesh Prasad Ranganath,
Department of Computing and Information Sciences

Kansas State University
{dan, dms3333, kiran, rvprasad}@cis.ksu.edu

Abstract

The Simple Object Access Protocol (SOAP) is a domi-
nant enabling technology in the field of web services. Web
services demand high performance, security and extensi-
bility. SOAP, being based on Extensible Markup Language
(XML), inherits not only the advantages of XML, but its rel-
atively poor performance. This makes SOAP a poor choice
for many high-performance web services. In this paper, we
present a new approach to implementing the SOAP pro-
tocol using caching on the SOAP server. This approach
has significant performance advantages over current ap-
proaches while maintaining complete protocol compliance.
We demonstrate its practicality by implementing a demon-
stration system under Linux, giving speedups of over 250%
in our sample applications.

1. Introduction

Recently, there has been tremendous development in
the area of web services in eCommerce, high-performance
computing, and Computational Grid. In response to the
need for a standard to support web services, SOAP became
the standard binding for the emerging Web Services De-
scription Language (WSDL) [12, 13]. SOAP is based on
XML [2] and thus achieves high interoperability when it
comes to exchange of information in a distributed comput-
ing environment. While carrying the advantages that accrue
with XML, it has several disadvantages that restrict its us-
age. SOAP calls have a large overhead due to the consid-
erable execution time required to process XML messages.
In this paper, we partially mitigate a primary negative of
SOAP: its speed of execution. We do this through the se-
lective implementation of caching on the server side, feel-
ing that a number of applications repetitively send the same
information, often in a structured form. Examples might
include “stock tickers,” game broadcasts, or airline ticket
pricing. Each of these is likely to send the same informa-

tion multiple times, yet the information is also continuously
changing, so a simple reverse proxy cache is inadequate.

In our previous work, we implemented caching on the
client-side SOAP engine, and achieved speedups of over
800% for the client [8, 7]. In this paper, we optimize
the server-side processing of a SOAP request, achieving
speedups of 250% for structured datatypes and achieving
at least a small optimization for all transactions. We use the
Java implementation of in Tomcat 5.0.14, and choose the
most normal model of SOAP that is used in distributed soft-
ware, the RPC-style. This choice is common among Web
developers, as it closely resembles the method-call model.

Detailed information about SOAP and how it is used in
web services is presented in Section 2, as well as a discus-
sion of other efforts in the field. In Section 3, we present
our analysis on the factors and potential of caching within
the SOAP architecture. We then discuss our implementa-
tion in Section 4, which is followed by the results of the ex-
periments we conducted to compare performance of several
variations of our algorithm. We will present our conclusions
and future work to extend/improve these algorithms in Sec-
tion 6.

2. Background and related work

We use HTTP as the underlying protocol for transporting
SOAP XML payloads, although it is not mandatory accord-
ing to the SOAP specification. Binding SOAP to HTTP pro-
vides the advantage of being able to use the formalism and
decentralized flexibility of SOAP with the rich feature set of
HTTP.To send a request to the server, the SOAP RPC client
creates an instance of org.apache.soap.rpc.Call, a Java class
that encapsulates a SOAP RPC method call. After specify-
ing the name of the service and the method being invoked,
we set the parameters, which in this case are the names of
the two cities, using the setParam() method of the Call ob-
ject. The actual communication with the server is done with
the use of the invoke() method of the Call object to make a
method call to the server. Fig. 1 shows the SOAP payload
that the client generates. Being in ASCII text, this message

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

is very large in size when compared to a similar request of
a JavaRMI client. Note that the source and the destination
cities are stored in the From and the To tags of the SOAP
payload.

Upon examination of the profile data of this SOAP RPC
client, it is found that, about 50% of the execution time is
spent in XML encoding and creating a HTTP connection[7].
XML encoding involves preparation of the SOAP payload,
which is basically serializing and marshalling of the pay-
load before it is transmitted to the server.

Figure 1. SOAP payload generated by SOAP
RPC client.

Comparing several such requests from the client, it is
found that the SOAP payloads differ only in the values of
the From and the To tags (Figure 1). For each such request,
the client has to prepare the SOAP payload, which takes sig-
nificant amount of processing time involving XML encod-
ing. From this observation, we figure out that, there can be
a better way to handle similar multiple calls made from our
clients.

There have been several studies comparing SOAP with
other protocols, mainly binary protocols such as Java RMI
and CORBA. All of this research has proven that SOAP, be-
cause of its reliance on XML, is inefficient compared to its
peers in distributed computing. In this section we examine
studies [3, 6, 4] which explain where SOAPs slowness orig-
inates and consider various attempts to optimize it.

SOAP, relying heavily on XML, requires its wire for-
mat to be in ASCII text. This is the greatest advantage of
using SOAP, as the applications need not have any knowl-
edge about each other before they communicate. However,
since the wire format is ASCII text, there is a cost of conver-
sion from binary form to ASCII form before it is transmit-
ted. Along with the encoding costs, there are substantially
higher network-transmission costs, because the ASCII en-
coded record is larger than the binary original [3]. Refer-

ence [3] shows that there is a dramatic difference in the
amount of encoding necessary for data transmission, when
XML is compared with the binary encoding style followed
in CORBA.

Extreme Lab at Indiana University [4] developed an op-
timized version of SOAP, namely XSOAP. Its study of dif-
ferent stages of sending and receiving a SOAP call has re-
sulted in building up of a new XML parser that is special-
ized for SOAP arrays, improving the deserialization rou-
tines. This study employs HTTP 1.1, which supports chunk-
ing and persistent connections.

Reference [11] states that XML is not sufficient to ex-
plain SOAPs poor performance. SOAP message compres-
sion was one attempt to optimize SOAP; it was later dis-
carded because CPU time spent in compression and decom-
pression outweighs any benefits [11]. Another attempt in
[11] was to use compact XML tags to reduce the length of
the XML tag names. This had negligible improvement on
encoding, which suggests that the major cost of the XML
encoding and decoding is in the structural complexity and
syntactic elements, rather than message data [11].

In Reference [1], O. Azim and A. K. Hamid, describe
client-side caching strategy for SOAP services using the
Business Delegate and Cache Management design patterns.
Each study addressed pinpoints an area where SOAP is slow
compared to its alternatives. Some present optimized ver-
sions of SOAP using such mechanisms as making compact
XML payload and binary encoding of XML. While said
mechanisms achieved better efficiency, none could match
Java RMIs speed and simultaneously preserve compliance
to the SOAP standard.

3. Cost Analysis

The previous section provides numbers that indicate
that marshalling incurs the highest cost while processing a
SOAP message processing. In this section we shall consider
various steps involved in processing a SOAP message, as-
sociate cost functions to these steps, and illustrate the im-
pact of possible caching-based optimizations based on the
changes to the cost functions. These can be broken down
into the following steps.

1. Reception of the request by the router,

2. Identification of the provider and the dispatch of the
call to the provider

3. Dispatch of the call to the actual service and reception
of the subsequent response,

4. Marshalling of the envelope, and

5. Marshalling of the response.

Of these steps, 1 and 3 cannot be optimized, while the
rest can be optimized via caching. If there are multiple re-

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

quests for the same data then Step 2 can be optimized by
caching the marshalled form of the response or marshalled
response 1 for each distinct request. A request is distinct
from another request if either the service differs or any of
the arguments in the request differ in value. However, stal-
eness of response has a major impact on the correctness of
the approach and the performance of cache. Hence, in this
exposition we assume that there is suitable logic to ensure
staleness constraints on the cached data is honored2. We in-
troduce 3 variables to capture the performance cost incurred
in step 2 and beyond.

bCacheLT is the time taken to lookup the marshalled data
for a given response object,

tdispatch is the time taken to dispatch the call to the
provider,

tmarshall is the time taken to prepare the marshalled re-
sponse based on the response, and

bCacheMiss is the probability of cache misses.

Hence, the total cost of processing per message is given
by cost(1) = bCacheLT + (tdispatch + tmarshall) ×
bCacheMiss as the dispatch and marshalling cost are only
incurred when there is a cache miss in step 2.

We have observed that the envelope for a service is in-
dependent of the request, hence, it is possible to cache the
envelope in it’s marshalled form and avoid redundant mar-
shalling operations in step 4. This leads us to a cost function
cost4(1) = envelopeMT × (1 − cacheEnabled) where
cacheEnabled ranges over 0 indicating caching in step 4 is
disabled and 1 indicating caching in step 4 is enabled.

In step 5, we have identified 2 possible caching strate-
gies given below.

Marshalled response caching If marshalled response is
cached, upon receiving a response from the provider
the router checks if there is a marshalled form of
the given response in the cache. If so, the mar-
shalled form is used. If not, a new marshalled re-
sponse is generated from the given response and
cached.

Marshalled response template caching For a service, the
structure of the marshalled response does not change
between any two similar responses3. Also, marshalling
of response involves wrappers that wrap the serialized
form of primitive data types. Hence, it is possible to
create and cache a template of the marshalled response
that contains the required wrappers with “holes” in

1 From here on, we will refer to the marshalled from of the response as
marshalled response.

2 This is part of our future work.
3 Responses are similar if the termination condition of the dispatch is

the same.

them and the serialized form of the primitive data com-
ponents of response can be injected into the “holes”
while instantiating the template. When compared to
the previous strategy, this strategy should incur more
cost in terms of template instantiation.

As both the above strategy involve cache lookups based
on responses and as responses are in general complex data
types, the cost associated with lookup is non-negligible
when compared with lookup based on primitive data type.
The cost is incurred by “walking/visiting” each component
of the response in order to check if it exists as a key in the
cache. The situation would be similar even if we were to re-
sort to hash-based cache lookups but the cost would prob-
ably increase by a multiplicative constant when there are
collisions during hashing. This cost is also incurred while
marshalling a response in non-cached scenario. Hence, we
capture the cost of exploring the response as texplore and
the sum of cost of marshalling each component of a re-
sponse as tresponseMTime. Let eCacheMiss be the proba-
bility of cache misses in step 5 and tinstantiateT ime be the
cost of instantiating a template of a marshalled response.
From these, the total cost of processing per message in step
5 can be calculated as cost5(1) = texplore + tresponseM

when no caching (NC) is used, cost5(1) = texplore × (c1 +
eCacheMiss) + tresponseM × eCacheMiss when mar-
shalled response caching(MRC) is used and c1 ≥ 1, and
cost5(1) = texplore + tinstantiate when marshalled re-
sponse template caching(MRTC) is used.

Upon substituting cost5 and cost4 in cost1 we get the fol-
lowing cost functions for processing n messages.

cost1NC(n) = (bCacheLT + (tdispatch + cost4(1)
+texplore + tresponseMTime)
×bCacheMiss) × n

cost1MRC(n) = (bCacheLT + (tdispatch + cost4(1)
+texplore × (c1 + eCacheMiss)
+tresponseMTime × eCacheMiss)
×bCacheMiss) × n

cost1MRTC(n) = (bCacheLT + (tdispatch + cost4(1)
+texplore + tinstantiate)
×bCacheMiss) × n
+tmarshall

In the above functions, the underlined factors of the
equation strongly influence the overall cost. Hence, we shall
compare each of these equations based on the underlined
terms.

NC vs MRC When eCacheMiss � 1, MRC outperforms
NC. This happens in cases when the request is fixed
over time in terms of the values of its components.
Hence, approach MRC should scale elegantly with
support to enforce staleness constraints or well tuned

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

cache flushing logic. Either of these two features is re-
quired to control the growth rate of the cache as it is di-
rectly proportional to the number of distinct responses.

NC vs MRTC In this case MRTC should outperform NC
with marginal memory overhead when tinstantiate �
tresponseM , since the cost of instantiating a template
should be relatively smaller than marshalling the entire
response.

MRC vs MRTC In this case eCacheMiss de-
cides the validity of the pivotal relation
tinstantiate � tresponseM × eCacheMiss. As-
suming tinstantiate and tresponseM are compara-
ble, the relation holds in case of services in which
the high rate of change of response leads to in-
creased eCacheMiss value. In such situations MRTC
is bound to outperform MRC. If the rate of repeti-
tion of response is high then it leads to decreased
eCacheMiss value, hence, MRC is bound to outper-
form MRTC. However, if tinstantiate is consider-
ably smaller than tresponseM then the performance
of MRC may be comparable that of MRTC. Inde-
pendent of the relation, MRTC has a better mem-
ory cost when compared MRC as MRTC’ cache
growth rate is proportional to the number of ser-
vices used in a period of time while MRC’ cache
growth rate is proportional to the number of dis-
tinct responses in a period of time.

From the above inferences, we can conclude that caching
of responses at various stages can improve the performance
of a SOAP server. We can also conclude, and verify in Sec-
tion 5, that marshalled response template caching can pro-
vide in improvements in both, time and space, when com-
pared to marshalled response caching.

4. Implementation

R
P

C
R

o
u

te
rS

e
rvle

t

R
P

C
Ja

vaP
ro

vid
e

r Response

Client requestR
P

C
Ja

vaP
ro

vid
e

r Response

Client RequestR
P

C
Ja

vaP
ro

vid
e

r Response

Client Request

Figure 2. Standard SOAP RPC flow of control

Our intent was to create multiple SOAP caching imple-
mentations with minimal changes to the current SOAP ar-
chitecture. We were able to use the flexibility of the cur-
rent SOAP architecture with slight modifications to develop
our caching strategies. As per design, the client request pro-
cessing is controlled by the provider implementation. The
provider can be grouped with 4 other classes that constitute

the flow of a request as it passes through the server (See Fig-
ure 2).

The first stage of execution is related to the
RPCRouterServlet. This class accepts a client request
message and transforms it into Java objects. The client re-
quest contains the provider name along with the service
method name and parameters. The provider is then lo-
cated using the information supplied by the client re-
quest.

The client request is then passed to the provider who for-
wards the request to the RPC router, the second stage of ex-
ecution. The router is responsible for finding and executing
the service requested by the client.

The third stage of execution is the service implementa-
tion. The service is a custom implementation not associated
with the server. In our experiment, the available services
consisted of generating and returning simple and complex
data types. The value returned from the service is wrapped
in an org.apache.soap.Response object and returned to the
provider.

The provider is the last stage of execution. The provider
controls the request processing and response genera-
tion and, therefore, a majority of the execution time re-
quired to complete process the client request is within the
provider. The provider interface allowed us to use the exist-
ing org.apache.soap.provider.RPCJavaProvider as a model
to develop our own providers for each of the three caching
strategies. There was a need for some slight modifica-
tions and additions, but all the existing method signatures
remained the same.

The RPCJavaProvider implementation itself can be bro-
ken into four different sections. These sections consist of
invoking the service, building an envelope, marshalling the
envelope and setting resulting xml into the current context.
The profiled data from the RPCJavaProvider showed a large
percentage of the time spent by the provider was in the
XML encoding or marshalling process. If there was a sce-
nario where the service was to produce the same response
multiple times, this would prove costly and inefficient. The
same response xml would need to be regenerated for ev-
ery client request.

To avoid the regeneration of the same response xml,
a cache was constructed for use with every new provider
implementation. This cache implementation is based on a
java.util.Hashtable. The specifics on how the cache was
used and the modifications required to support the cache
is stated with each provider implementation.

4.1. Complete Caching

The first of three caching implementations consists of
complete caching of the response object. In this implemen-
tation, a unique client request is received and a response

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

R
P

C
R

ou
te

rS
e

rvle
t

R
P

C
Ja

va
P

ro
vid

e
r Response

Client requestR
P

C
Ja

va
P

ro
vid

e
r Response

Client RequestR
P

C
Ja

va
P

ro
vid

e
r Response

Client Request

C
a

ch
e

L
oo

ku
p

R
e

spo
n

se

Figure 3. Complete Caching flow of control

generated. Once the response has been marshaled into xml
form, it is cached using the client request as the key. This
will ensure the response will be correct for an identical
client request. This will also negate the time required to gen-
erate a response for a non unique client request.

The cache exists within the provider and is keyed by the
client request encapsulated in a Call object generated from
the client request. The Call object is used as the key to pro-
vide that every aspect of the client request is used to iden-
tify the correct response stored in the cache. In addition to
other objects used to encapsulate the client request, have the
equals and the hashkey methods overwritten from to allow
the cache to function correctly. The complete caching strat-
egy allowed the server to skip several stages, including the
service execution and the response marshalling.

B
od

y

Cached xml

Lookup

B
o

d
y.m

a
rsh

a
ll

P
ro

vid
e

r

E
n

velo
p

e

Response

Marshall

Response

Marshall

Figure 4. Body Caching flow of control

4.2. Body Caching

For the next implementation, we started to focus on the
sections of the response xml message. We noticed that the
body element within the response did not change for the
same values returned by the service. If the Body element
was cached, there would be no need to remarshaling or se-
rialization of any repeated values returned from the service.

The body section of the xml message was cached using
the response from the service as the key. The Response ob-
ject returned from the RPCRouter will be used as the key.
This will guarantee the cached body element is correct for
the response value.

There were several object modified in this imple-
mentation. For the Hashtable to function correctly, the
equals and hashkey methods were added to Response and
org.apache.soap.rpc.Parameter. The Parameter object con-
tains the return value from the service. The hashkeys re-
turned by the Response object were the hashkeys of the
return values of the service.

The objects in the envelope hierarchy also needed to be
modified to contain the cache. The cache existed within the
Response node, but also required a modification to the Body
element.

4.3. Envelope and Body Caching (Template)

In the last implementation, we also realized that for ev-
ery request message sent by our clients, the envelope el-
ement of the response did not change. This allowed us to
keep a static copy to avoid the process of marshalling the
envelope object. We continued to cache the Body element
as with the Body Caching implementation described above.
We are again focused on avoiding the remarshaling of any
part of the response message that will not change from an
identical response.

The Envelope object required the only additional modi-
fication in this implementation. The marshalling code was
removed and replaced with a static envelope header defini-
tion.

5. Experimental results

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

getArrayObject getArray getRandomArray

service

ti
m

e

RPC

BodyCache

Template

Figure 5. Relative times to marshal array ob-
jects for an array of objects, a repeated array
of integers, and an array of random integers.
(Pentium 4 system, time in ticks)

Our experimental results are positive. We were able to re-
duce the amount of time to generate a response in each of

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

getArrayObject getArray getRandomArray

ti
m

e

RPC

BodyCache

Envelope

Complete

Figure 6. Relative times to completely fetch
array objects for an array of objects, a re-
peated array of integers, and an array of ran-
dom integers. (Pentium 4 system, time in
ticks)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

getObject getRandomInt doNothing getBasic

service

ti
m

e

RPC

BodyCache

Template

Figure 7. Relative times to marshall simple
and compound objects. Responses include
a simple compound object, random integer,
null response, and integer. (Pentium 4 sys-
tem, time in ticks)

the caching implementations. The different provider imple-
mentation performed as expected with the complete caching
strategy providing the largest speedup followed by the en-
velope plus body caching and body caching only.

Environment For each provider test, the same client
configuration was used. The only difference between each
of the client requests was the provider name in the enve-
lope payload. For each test run, the different service calls
were grouped together. Each provider client was allowed to
make a request for a single service. This was repeated 25
times for each service. Before starting a new service group-
ing, the cache was cleared for each of the caching provider
implementation.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

doNothing getBasic getRandomInt getObject

service

ti
m

e

RPC

BodyCache

Template

Complete

Figure 8. Relative times to completely fetch
simple and compound objects. Responses
include a simple compound object, random
integer, null response, and integer. (Pentium
4 system, time in ticks)

The services provided in our experiment were designed
to return a variety of different values. The values returned
where void, int, string, an array of ints and an array of ob-
jects (See Figures 8 and 7). The arrays returned always con-
tained 100 elements.

Our software environment was Tomcat 5.0.14, J2SDK
1.4.2 02, and J2EE 1.3.1 running under Linux 2.4.x ker-
nels on a 500Mhz. Pentium III, 1.8Ghz. Pentium 4, and dual
Athlon MP 1800+. Each machine had sufficient RAM that
paging was not an issue. All results are from the Pentium 4
system unless otherwise noted.

We used the sun.misc.Perf timer included in the j2sdk
1.4.2. This timer gave us a resolution of 1,000,000 per sec-
ond. The time between sequential calls to the timer was less
than 5 ticks on all machines.

Caching strategies The four providers used in the ex-
periment where the RPCJavaProvider, BodyCacheProvider,
TemplateCacheProvider and CompleteCacheProvider. Each
of the last three providers included a Caching strategy as
mentioned in Section 4. The RPCJavaProvider was pro-
vided by the original SOAP implementation. All of the
caching strategies provided in this experiment provided pos-
itive results with all producing faster response times, with
the exception of the random services, where in one case a
small (¡2%) performance slowdown was noted.

• CompleteCache There was no need for work within
the server for the complete caching provider imple-
mentation, with the exception of a cache lookup and
retrieval. There client request message was service in
an average of around 65% of the time required by the
RPCProvider for basic response types and an average
of around 20% for an array, for a speedup of over 500%
(Table 1). This caching strategy, however, blocks com-

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

null Basic Random int Object Array Object Array Random Array
SOAP/RPC 1767 1760 1732 1689 5860 5608 7485

Body 1750 1629 1759 1553 1783 1780 7382
Template 1633 1533 1656 1454 1637 1643 7290
Complete 1234 1136 1085 1082 1164 1149 1149

Table 1. Average response time for retrieving various types of objects under different caching strate-
gies (Pentium 4 system, time in ticks).

munication with the service and ignores of any possi-
ble changes that might have occurred with the service
response.

• Envelope & body caching The Envelope and Body
caching strategy show the next best performance gain.
In this implementation, there was no need to regenerate
the Envelope and Body elements for the xml response
message. However, this strategy was sensitive to the
changes in any changes in a response from the ser-
vice and the service was allowed to execute normally.
The time required by this provider was 75 – 92% of
the RPCProvider profile for basic response types and
around 28% for an array. The Random services are not
included in these numbers because they negate the use
of a cache. They still show a small performance gain,
however, because of the Envelope caching.

• Body only Our last implementation consisted of a Body
only caching strategy. As the name suggests, the En-
velope element is not cached. Our interest was the
caching the serialized value returned from a service.
The time required by this provider was 91 – 99% of the
RPCJavaProvider profile for basic response types and
around 31% for an array. The random services in this
implementation produced times that were higher than
expected, exceeding the time required by the RPC-
JavaProvider by a small percentage. This is as expected
since the only time difference between this provider
implementation and the RPCJavaProvider implemen-
tation is the addition of a cache lookup and adding the
body element to the cache (Figures 9 and 10).

The numbers mentioned above was the total time re-
quired to service each client request. In theory, the only
values that should have changed in each implementation
should have been the time required to marshal the data. If
you compare the marshalling time (Figures 5, 6, 7, and 8)
required by the Body only and Envelope and Body caching
strategies to the RPCJavaProvider marshalling, you will see
a performance gain of around 10% and 15% respectively for
basic values and around 250% for arrays.

Scalability We can also see from Figure 11 that, as might
be expected, the scalability of the server is significantly en-

2%

2%

75%

21%
RPCRouter.invoke

Response.buildEnvelope

Envelope.marshall

SOAPContext.setRootPart

Figure 9. Time distribution for fetching an ar-
ray under SOAP RPC. (Pentium 4 system)

0

200

400

600

800

1000

1200

1400

1600

1800

do
Noth

in
g

ge
tB

as
ic

get
Ran

dom
In

t

ge
tO

bje
ct

SOAPContext.setRootPart

Envelope.marshall

Response.buildEnvelope

RPCRouter.invoke

Figure 10. Time distribution for fetching sim-
ple objects. (Pentium 4 system)

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

0.00

10000000.00

20000000.00

30000000.00

40000000.00

50000000.00

60000000.00

1 10000

requests

ti
m

e

RPC

BodyCache

Template

Complete

Figure 11. Response times of various algo-
rithms over varying loads servicing a burst
of simple requests.

hanced through lower processing loads. The overhead im-
posed by the cache lookup times has been measured to be
practically negligable, so almost the full benefit of reduced
XML data handling is available to improve overall server
performance.

6. Future Work and Conclusion

We are currently working to enhance our system in two
major areas. First, we plan to implement subelement-level
caching, allowing partial caching to occur even if a subset of
the subelements in a reply have been modified from a pre-
vious call. We anticipate this will give significant improve-
ments for SOAP communication in which many elements
are constant, but a few change regularly. Second, we plan
to explore applying partial evaluation (aka program special-
ization) to produce optimized response modules for SOAP-
based web services [10, 9, 5]. We are also exploring various
cache management options, and the possibility of submit-
ting our code for inclusion into the primary Apache code
base.

In this paper we have presented a new approach for ac-
celerating the performance of a vital portion of the eCom-
merce infrastructure through the use of directed caching of
responses. Our theoretical analysis predicts, and experimen-
tal results confirm, that this approach can give substantial
speedups (250%+) for many practical applications, while
exacting no performance penalty for applications unsuited
to the architecture beyond the memory devoted to the cache.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under the award numbers
CCR-0082667 and ACS-0092839. Any opinions, findings,
and conclusions or recommendations expressed in this pub-

lication are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.

References

[1] O. Azim and A. Hamid. Cache SOAP services on the client
side. JavaWorld: IDG’s magazine for the Java commu-
nity, Mar. 2002. http://www.javaworld.com/javaworld/jw-
03-2002/jw-0308-soap.html.

[2] T. Bray, J. Paoli, and C. Sperberg-McQueen. Exten-
sible Markup Language (XML) 1.0. W3C, Feb. 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[3] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient wire formats for high performance computing. In
Proceedings of Supercomputing 2000, pages 64–64, 2000.

[4] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In
Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 2002
(HPDC’02), page 246. IEEE Computer Society, 2002.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păsăreanu, Robby, and H. Zheng. Bandera: extracting finite-
state models from java source code. In Proceedings of
the 22nd International Conference on Software Engineering,
pages 439–448, June 2000.

[6] D. Davis and M. Parashar. Latency performance of SOAP
implementations. In Proceedings of the 2nd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
pages 407–412, 2002.

[7] K. Devaram and D. Andresen. SOAP optimization via client-
side caching. In Proceedings of the First International Con-
ference on Web Services (ICWS 2003), pages 520–524, Las
Vegas, NV, June 2003.

[8] K. Devaram and D. Andresen. SOAP optimization via
parameterized client-side caching. In Proceedings of the
IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS 2003), pages 785–
790, Marina Del Rey, CA, Nov. 2003.

[9] M. B. Dwyer and J. Hatcliff. Slicing software for model con-
struction. In Proceedings of the 1999 ACM Workshop on Par-
tial Evaluation and Semantic-Based Program Manipulation,
pages 105–118, Jan. 1999.

[10] J. Hatcliff and O. Danvy. A computational formalization for
partial evaluation. Mathematical Structures in Computer Sci-
ence, 7(5):507–541, 1997.

[11] C. Kohlhoff and R. Steele. Evaluating SOAP for high perfor-
mance business applications: Real-time trading systems. In
Proceedings of WWW2003, Budapest, Hungary, 2003.

[12] Simple object access protocol (soap) 1.1, Feb. 2003.
http://www.w3.org/TR/SOAP/.

[13] Web Services Description Language (WSDL), 2001.
http://www.w3.org/TR/wsdl.

Proceedings of the 2004 International Conference on Parallel Processing (ICPP’04)

0190-3918/04 $20.00 © 2004 IEEE

	footer1:

