
A Distributed Data Component for the Open Modeling

Interface

T. Bulatewicza,∗, D. Andresena, S. Auvenshineb, J. Petersonc, D. R.
Stewardb

Kansas State University, Manhattan, KS, 66502, USA

aDept. of Computing and Information Sciences
bDept. of Civil Engineering

cDept. of Agricultural Economics

Abstract

Data management is a fundamental part of environmental modeling and

simulation. This is particularly true for the types of interdisciplinary, in-

terconnected models required to address water resources challenges faced by

society, such as our case study of a depleting aquifer in an agriculturally im-

portant area. Model input data are often obtained from online data services

and output data uploaded to them for purposes such as storage or distri-

bution. Enabling linked models to directly communicate with such services

can simplify this process. We have developed an Open Modeling Interface

(OpenMI) data component that retrieves input data for model components

from standards-based web services and delivers output data to them. The

adoption of standards for both model component input-output interfaces

∗Corresponding author, 234 Nichols Hall, Kansas State University, Manhattan, KS
66502, USA, 505-490-9681

Email addresses: tombz@ksu.edu (T. Bulatewicz), dan@ksu.edu (D. Andresen),
auvenshi@ksu.edu (S. Auvenshine), jpeters@ksu.edu (J. Peterson), steward@ksu.edu
(D. R. Steward)

Preprint submitted to Environ Modell Softw July 21, 2013

and web service application programming interfaces make it possible for the

component to be reconfigured for use with different linked models and vari-

ous web services. The data component employs three techniques tailored to

the unique design of the OpenMI that enable efficient operation: caching,

prefetching, and buffering, making it capable of scaling to large numbers of

simultaneous simulations executing on a computational grid. In this work we

present the design of the component, an evaluation of its performance, and a

case study demonstrating how it can be incorporated into modeling studies.

The results of the performance study indicate that it is capable of scaling

to large numbers of simulations (tested up to 1000) incurring no delay when

delivering data and an average delay of 0.3 to 3.78 s per time step when

retrieving data. The techniques of caching and prefetching were effective in

reducing or eliminating this delay in cases in which simulations used identical

input data or when data could be retrieved from the web services before it

was requested by a model component.

Keywords: OpenMI, Data management, Web services, Integrated modeling

1. Introduction1

Data management is a fundamental part of environmental modeling and2

simulation. Within the context of integrated environmental modeling, the3

input data required by a set of computer models is typically collected from a4

variety of sources and assembled into a set of input files that are deployed with5

the model programs to a desktop computer or to a compute cluster composed6

of high-performance computers connected via a fast network. These sources7

often include several different online (i.e. Internet-connected) data reposito-8

2

ries provided by various government, academic, and private agencies. The9

data typically varies spatially and temporally and may be consumed from10

input files by a model once during initialization or throughout the execution11

of a simulation. The output data from computer models follow the reverse12

path as the output files are collected and aggregated before being uploaded13

to online services. These services may provide the means to archive data,14

publish data publicly, share data within and across institutions, or analyze15

and visualize data.16

Linked (or coupled) models are composed of independent models that17

cooperate to collectively perform simulations where each model consumes a18

set of input files and produces a set of output files. The preparation of these19

sets of input files (including the retrieval of data from online sources) and20

the processing of the output files sets (including the delivery of data to on-21

line services) is typically performed manually or through ad-hoc automation22

techniques such as scripting. This may require a substantial effort in devel-23

oping and configuring the necessary software and scripts for both processing24

the model-specific input and output files and for communicating with online25

services, both of which may require changes or additional software develop-26

ment each time the integrated model is changed (e.g. adding or removing27

models) or the online services it relies on.28

Enabling linked models to directly communicate with online services can29

simplify the management of model data by avoiding the intermediary use of30

data files and obviating the need for manual data processing tasks and ad-31

hoc scripting. Through the adoption of standards, in both model component32

input-output interfaces and web service application programming interfaces,33

3

general-purpose data components can facilitate the exchange of data between34

model components and web services. It is advantageous to place such web35

service functionality into data components rather than directly into model36

components because it allows for more efficient operation (e.g. avoiding du-37

plicate data retrieval by different components) and minimizes the software38

complexity of the model components.39

We have developed a distributed data component that conforms to the40

Open Modeling Interface (OpenMI) (Gregersen et al., 2007) that both pro-41

vides input data to model components retrieved from standards-based web42

services and delivers model output data to such services on each time step.43

By operating on a time step basis, the data component enables model com-44

ponents to consume input data, such as measurement data from sensor net-45

works, and distribute output data in real-time. This also supports compu-46

tational steering scenarios in which model output is monitored and inputs47

are manipulated as necessary as a simulation is being performed. The data48

component employs three techniques tailored to the unique design of the49

OpenMI that enable efficient operation: caching, buffering, and prefetching.50

This work unifies our previous efforts (Bulatewicz and Andresen, 2011, 2012)51

and includes improvements to the software design that achieve a significant52

increase in scalability. It also provides an integral part of an interdisci-53

plinary modeling study in which we are integrating models of groundwater,54

economic decision making, and crop production to investigate the impact55

of policy on irrigated agricultural systems. The following sections position56

this work within the context of existing research and introduce the aspects57

of the OpenMI relevant to understanding the design and implementation of58

4

the data component. We then present the design of the data component in59

Section 2, an evaluation of its performance in Section 3, and a demonstration60

of how it may be incorporated into an integrated modeling study in Section61

4.62

1.1. Related work63

This work lies at the intersection of component-based modeling, web ser-64

vices, and grid computing. The synergy between web services and modeling65

and simulation was recognized quickly as web standards emerged (Chan-66

drasekaran et al., 2002). Web services can provide a means for both re-67

motely controlling the execution of computer models running on servers or68

computational grids (Castronova et al., 2013a; Goodall et al., 2011; Horak69

et al., 2008; Pullen et al., 2005) and enabling desktop or grid-based models70

to exchange input and output data with online services. In the latter case71

an online service may be composed of a suite of Internet applications and/or72

a collection of databases.73

One class of online services that is well-suited for exchanging data with74

computer models is workflow management systems which are frameworks75

to setup, execute, and monitor scientific workflows composed of web ser-76

vices, such as Taverna (Hull et al., 2006) and VisTrails (Bavoil et al., 2005).77

Such systems could provide workflows that pre-process or post-process model78

data or conduct simulations whose input or output data is utilized by mod-79

els. Another class of online services are data-centric and provide data stor-80

age (e.g. archiving) and retrieval (e.g. public access or sharing within or81

across institutions). Examples include the Integrated Rule-Oriented Data82

System (iRODS) (Rajasekar et al., 2006) which is a file-based distributed83

5

data storage system, the Consortium of Universities for the Advancement of84

Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS)85

(Maidment, 2008; Tarboton et al., 2009) which facilitates the management86

of hydrologic data, Globus Online (Globus Online, 2013) which provides on-87

line managed data storage based on GridFTP (Globus Toolkit, 2013), and88

HDF5WS (Shasharina et al., 2006) which provides access to HDF5 data files.89

Web services provide a means for these online application and data ser-90

vices to achieve interoperability with one another and with client applications91

running on desktop computers and compute clusters. Standards for web ser-92

vices and the data encodings they use make it possible for independent ap-93

plications to interpret exchanged data in a meaningful way. In the context94

of environmental modeling in which data is spatial-temporal in nature, the95

standards published by the Open Geospatial Consortium (OGC) for location-96

based information and services are of particular relevance. For example, the97

Web Feature Service (WFS) Standard (Vretanos, 2010) defines how geospa-98

tial data may be accessed from a web service and utilizes the Geographic99

Markup Language (GML) (Portele, 2007) Standard. Within the domain of100

hydrology, the CUAHSI HIS WaterOneFlow web service Application Pro-101

gramming Interface (J. S. Horsburgh and Whitenack, 2009) defines how time102

series hydrological observations data may be accessed and utilizes the Water103

Markup Language (WaterML) encoding standard (Zaslavsky et al., 2007).104

The fundamental data model upon which these services and encodings are105

based (consisting of quantities, times, and locations) is generally compatible106

with the data model employed by the OpenMI for the exchange of data be-107

tween components making interoperability between services and components108

6

possible (Castronova et al., 2013b). Several OpenMI components have been109

developed that retrieve time series data from WFS web services (OpenMI110

Association, 2010). In a related work, Castronova et al. (2013b) enabled a111

desktop application to retrieve input data from WaterOneFlow web services112

and store them in a local database which could then be accessed by model113

components via a general-purpose data-access component.114

Our work complements these efforts in two ways. First, our data compo-115

nent is not only capable of retrieving data from web services but delivering116

data to them as well. Second, the data component is not limited to use117

on desktop computers but may also be used on high-performance compute118

clusters. The prototype implementation is compatible with WaterOneFlow119

web services and is being extended to support additional standards. In our120

previous work (Bulatewicz and Andresen, 2011, 2012) we developed indepen-121

dent components for retrieving data from web services and delivering data122

to them. This work unifies our earlier efforts into a single component and123

includes fundamental changes to the software design to scale to significantly124

higher numbers of simultaneously executing simulations.125

1.2. The Open Modeling Interface126

The Open Modeling Interface (OpenMI) Standard (Gregersen et al., 2007)127

defines how software components may exchange spatial-temporal data with128

one another and coordinate their execution. Components that possess the ca-129

pabilities defined by the interface can be linked together and exchange data,130

typically on each time step, as they carry out simulations. These capabilities131

are implemented as functions (specifically, object methods and properties)132

within the source code of a component that either provide descriptive infor-133

7

mation about the component (such as its inputs and outputs) or support its134

execution (such as performing initialization or exchanging data).135

Each input and output is formalized as an exchange item that describes136

the properties of a domain quantity such as its name, units, and spatial dis-137

tribution. The way in which a quantity is spatially distributed is formalized138

as an element set that is composed of a list of elements each of which has a139

textual identifier, spatial shape (point, line, or polygon) and geographic co-140

ordinates. When configuring a linked model, called a composition, a scientist141

uses a visual software tool (the OpenMI Configuration Editor application -142

OmiEd) to choose a set of components and assign each input exchange item143

of a component to an output exchange item of another component. These144

assignments are called links and there may be multiple links between two145

components and may be in the same or opposite directions. At runtime a146

component requests data from other components along each input link, typ-147

ically before performing each time step. The request is made by calling the148

GetValues function of each linked component specifying a date and time at149

which the data is needed, as illustrated in Fig. 1. The GetValues function150

returns a list of real numbers called a value set where each number represents151

the state of the quantity at the requested point in time at a different spatial152

location. As such, each call to GetValues may be considered to be a request153

for the state of a quantity at a point in time for a list of spatial locations and154

the response to be the list of numbers returned.155

In addition to facilitating the exchange of data between components, the156

GetValues function provides implicit coordinated execution of components157

at runtime. The execution of a linked model is initiated when one of the158

8

Component Component Component

GetValues

Temperature 1/1/2013

Time

Element Set

19.6 22.8 20.1 18.8

Value Set

004 001

002
003

001 002 003

Quantity

004

request

response

Figure 1: Lists of real numbers called value sets are exchanged between model components.

components begins executing. On each time step the component invokes159

GetValues on each component linked to it to obtain all the necessary input160

value sets for the time step, pausing its execution during each invocation.161

When GetValues is invoked on a component, it executes as many time steps162

as necessary to advance to the requested point in simulation time and returns163

a value set corresponding to that time. Thus a component only executes time164

steps on-demand in response to the invocation of its GetValues function by165

another component and may itself invoke GetValues on other components166

prior to performing each of its time steps. In this way components take turns167

executing and pull data from one another until the initiating component’s168

simulation is completed.169

Components are typically model programs that consume input data and170

produce simulated output data, but they can serve other purposes as well.171

9

Examples include data conversion or transformation, data visualization, ac-172

cess to databases, and access to online data services as in the case of our173

data component.174

2. Methods175

2.1. Overview176

The purpose of the data component is to serve as an intermediary between177

online data services and model components, both providing model input data178

retrieved from web services and delivering model output data to web services.179

The design of the data component was guided by the following requirements:180

1. To be general-purpose181

2. To minimize the runtime of a simulation182

3. To be scalable183

Our design balances these three competing objectives making the data com-184

ponent broadly applicable and suitable for use on both desktop computers185

and compute clusters.186

The first requirement of the data component is that it is general-purpose187

such that its inputs and outputs can be defined, and redefined, by a scientist188

as necessary for different sets of model components. The input and output189

exchange items of the data component reflect the quantities exposed by a190

web service: any quantities that a web service can provide or accept can191

be configured as exchange items of the data component. This is possible192

because the OpenMI defines the way in which data is exchanged between193

software components and web service standards define the way in which data194

10

is exchanged with online services. Together these standards make it possible195

for the data component to serve as a data relay between model components196

and web services.197

The data component is configured (via a file) by specifying the list of198

input and output quantities that a web service can provide and accept, along199

with the element set definition of each and the web service URL and type.200

These quantities become available as input and output exchange items when201

the data component is added to a composition in the OmiEd application and202

can be linked to model components in the same way that links are added203

between model components.204

The second requirement of the data component is that it minimizes its205

impact on the runtime of a simulation, ideally causing no increase. If a data206

component was to call a web service after each request received from a model207

component to either obtain input data or send output data, the simulation208

would be paused during the web service call (due to the synchronous execu-209

tion of components) and increase the runtime of a simulation. This increase210

in runtime can be reduced or eliminated by decoupling the calls to the web211

services from the requests made by the model components. In order to de-212

couple the web service calls from the model component requests, the data213

component must have the ability to temporarily store model input and out-214

put data in a data store. Rather than the data component call a web service215

in response to each request for input data from a model component, it first216

checks to see if the data is already available in the data store. If it is, then it217

can be returned to the model component immediately, and if not, it can then218

be requested from a web service. There are two cases in which the data may219

11

already be available in the data store: (1) the data was previously requested220

by a model component, and (2) the data was retrieved from a web service221

ahead-of-time. We refer to the prior as caching and the latter as prefetching222

and these techniques can reduce, and in some cases eliminate, the increase in223

runtime due to the web service calls. In addition to minimizing the runtime,224

caching also minimizes the amount of data downloaded from the web services225

because each input is only retrieved once. The data store is shared among all226

simulations executing across a compute cluster to maximize the reusability227

of the cached data. With respect to sending output data, rather than call a228

web service in response to each request from a model component, the data229

component immediately stores the output data in the data store and sends230

it at a later time. We refer to this as buffering and it eliminates the increase231

in runtime otherwise due to sending output data to web services.232

The third requirement of the data component is that it is scalable such233

that many simulations, each containing an instance of the data component,234

may execute concurrently across a compute cluster with minimal impact to235

the runtime of the simulations. To these ends we employed two strategies:236

(1) maximize network efficiency when sending data to web services, and (2)237

separate the data component software into two tiers.238

Network utilization is inefficient when the amount of data being sent is239

small enough that the network latency is comparable to the transmission time240

of the data (i.e. the duration of time and amount of data exchanged at the241

network transport layer for establishing the connection and for sending the242

data are similar). To ensure that the network bandwidth is used efficiently243

when sending model output data to web services, the data component sends244

12

a sufficient amount of data in each web service call. With respect to retriev-245

ing data, which consists of values that each represent a quantity at a point246

in time for a location, the data component could request groups of values in247

each web service call for spans along any of these three dimensions in each248

web service call. At one extreme it could make a web service call for each249

individual value, and at the other extreme it could make a single web service250

call to obtain all the input values required for a complete simulation. In the251

prior case the network utilization may be inefficient due to the small data252

size of a single value, and in the latter case the execution of a simulation253

would be delayed until the data is retrieved and may require storing a large254

amount of data for the lifetime of the simulation (in addition it would pro-255

hibit both real-time online data access during the simulation and the ability256

to utilize multi-threaded and multi-hosted web services). Efficient network257

utilization can be balanced with real-time data access by requesting groups258

of values in each web service call (essentially coalescing what would otherwise259

be multiple requests into a single request). Values could be grouped by time,260

quantity, and/or location, depending on the capabilities of a web service. In261

addition, grouping by time would require the data component to be capable262

of predicting the simulation times at which model components will request263

data and grouping by quantity would only be possible in cases in which the264

data component is providing multiple quantities to one or more model com-265

ponents that are sourced from a single web service and requested for the266

same points in simulation time. We designed the data component such that267

requests are grouped by location (when supported by the web service) and268

left grouping by time and quantity to be addressed in future work due to the269

13

additional complexity.270

The data component software is organized into two tiers that separate271

the management of the data store and communication with web services272

from the interactions between the components within a composition. This is273

a more scalable design than our previous work (in which there was a single274

tier) because the management of the data store requires considerable com-275

puter resources (memory, processor, and network) yet accessing the data276

for providing input data to model components and collecting output data277

requires few resources. Without separating them, the resource demands of278

the data store are imposed on each data component thus increasing the re-279

source demands of every simulation. By separating them, the amount of280

resources dedicated to the management of the data store can be managed281

separately from those required by the individual simulations. The number of282

data managers that manage the data store can be increased or decreased in-283

dependently from, and as necessary to support, the number of simultaneous284

simulations.285

An overview of the system is illustrated in Fig. 2. Compositions of linked286

components perform simulations on the nodes of a cluster. Each composition287

includes a data component (labeled DC in the figure) whose input and/or288

output exchange items are linked to model components. Model components289

request input from data components (by invoking GetValues) for a quantity290

at a specific time and element set in the same way as from other model com-291

ponents. The data component in turn requests the input data from a data292

manager which may obtain the data from the data store or retrieve it from293

a web service to fulfill the request. Each time a model component produces294

14

Compute Node

Web Services

Model

DC

ModelModel

DC

Model

Model

DC

Model Model

DC

Model

Data Manager Data Manager

Composition

Compute Cluster

Figure 2: System overview. Arrows indicate the movement of data.

output data (in response to a GetValues request from another model com-295

ponent) the data component is notified. When notified, the data component296

obtains a copy of the output data (by invoking GetValues on the model com-297

ponent) and sends them to a data manager which stores the data for eventual298

delivery to a web service.299

2.2. The data store300

Data managers are responsible for both communicating with web services301

and managing the storage of model input and output data in the data store.302

We implemented a set of software modules that provide the functionality303

15

to communicate with web services and utilized an existing software for the304

data store functionality. The data store is a key-value store, which is a non-305

relational database in which related data is aggregated together and stored306

as an entry that is accessed via a unique identifier. We chose to utilize a307

key-value store because storing data in this way achieves high performance308

when scaling horizontally (i.e. increasing the number of compute nodes to309

allow for higher capacity) because the data can be efficiently sharded and310

replicated across compute nodes (i.e. each node stores a subset and/or copy311

of the entries).312

The data operations that may be performed on a key-value store include313

inserting entries, accessing entries, and removing entries, typically referred314

to as put, get, and remove. These operations rely on a unique key to be315

associated with each entry when inserted into the store and is subsequently316

used to locate the entry for access or removal. Locating entries based on317

their key is very efficient, while iterating or searching through all the entries318

is not, thus the way in which data is aggregated into entries dictates the319

way in which it may be efficiently accessed and thus the overall performance320

of a key-value store. The structure of the data exchanged between both321

components and between the data component and web services is a value set322

that consists of a list of real numbers that represent the state of a quantity323

at a point in time over a set of locations. As the value set is the unit of324

aggregation of data exchanged, storing each value set as an entry in the key-325

value store aligns with the way in which the data is accessed by the data326

component.327

Aggregating data as value sets is not the only possibility, as it would328

16

also be possible to aggregate data into larger units such as groups of value329

sets, or into smaller units such as the individual values that make up a value330

set (as in Bulatewicz and Andresen (2011)). Storing individual values as331

entries in the key-value store simplifies the process of assembling value sets332

ad-hoc from entries in the key-value store as they are requested by model333

components (to avoid the need to call a web service to obtain them) thus334

maximizing the reusability and the effectiveness of the cache and resulting in335

no storage of duplicate data. This also results in higher memory usage per336

entry as each entry incurs a constant overhead (approximately 260 B) that337

is approximately the data size of a single value resulting in 50% of memory338

usage being overhead, and greater processor and network usage as each entry339

must be inserted and removed from the key-value store individually. Storing340

value sets as entries in the key-value store (as in Bulatewicz and Andresen341

(2012)) minimizes overhead in terms of memory, processor, and network, but342

introduces the possibility of storing duplicate data in the key-value store in343

the case that the values stored in two value sets intersect and requires a344

more complex process to assemble value sets ad-hoc (see Section 2.3.1). In345

our earlier work we found that the overhead of storing individual values as346

entries limited the scalability of the system and thus in this work we designed347

the data component to store value sets as entries in the key-value store.348

Each entry in the key-value store is a variably-sized object consisting of a349

quantity identifier (string), timestamp (string), element set identifier (string),350

scenario identifier (string), a delivery flag (boolean), array of values (double351

precision), and value count (long), that are serialized into an array of bytes.352

The keys used to access the entries in the store are strings formed by the353

17

concatenation of the entry’s quantity identifier, element set identifier, times-354

tamp, and scenario identifier, for example: TemperatureSewardCounty2013-01-355

01T12:00:00S01. Using keys of this form guarantees uniqueness and makes it356

possible to efficiently lookup a value set from the key-value store for a spe-357

cific quantity, time, and element set, for a particular scenario identifier. The358

scenario identifier provides a way to partition, version, and identify value359

sets that are created by different linked models or instances thereof. For360

example, when executing several instances of a linked model, each instance361

may be assigned a unique scenario identifier so that the input and output362

value sets of each are distinct. The delivery flag indicates whether the value363

set is pending delivery to a web service.364

When a value set is delivered to a web service, additional information365

must be provided that indicates the locations the the values represent. This366

information is not stored inside the entries in the key-value store because367

all the value sets for a particular element set would result in the storage368

of duplicate data. As element sets are static during a simulation run there369

is typically a high ratio of value sets to element sets, so the entries only370

store the element set identifier and the actual element set information is371

stored separately in the data store. In this way a data store can lookup the372

complete element set information for any value set before delivering it to a373

web service.374

A number of different key-value store database systems could be utilized375

as the data store, such as Memcached (Memcached, 2013) or Cassandra (Cas-376

sandra, 2013). We chose to utilize the Hazelcast distributed data platform377

(Ozturk, 2010) because in our previous work we found it to be highly effi-378

18

cient and require minimal configuration. Hazelcast is a clustering, scalable,379

in-memory data platform that is implemented in Java and distributed as380

a shared library that we compiled into the data manager program. When381

the data manager is started it creates an instance of the Hazelcast platform382

peer that runs as a set of threads inside the data manager process. Instances383

within different data manager processes dynamically form a cluster by discov-384

ering one another via multicast and communicating via TCP/IP. Instances385

thus join and leave the cluster as data manager processes are started and386

stopped. Each instance has a local memory that is logically organized into387

one or more global hashmap data structures whose entries are distributed388

across the instances of a cluster and it is these distributed hashmaps that389

make up the data store. The instance running within a data manager is390

self-contained and the software modules within the data manager may only391

put, get, and remove entries (i.e. value sets) to and from the data store as392

illustrated in Fig. 3.393

The instances balance the entries in the data store such that they are394

evenly distributed among the instances executing on a cluster and each in-395

stance has approximately the same number of entries in its local memory. For396

each entry stored in an instance there is a backup copy of the entry stored in397

a different instance somewhere in the cluster in case an instance fails. When398

instances leave a cluster its entries are migrated to and distributed among399

the remaining instances. Each instance optionally persists the entries of its400

local memory to a file between executions.401

The Hazelcast platform supports native clients that may access the data402

store managed by the cluster of instances. A client connects to an instance403

19

Data Manager

Web Services

Hazelcast Instance

Web Modules

Retrieval

Delivery

send/receive
value sets

value sets

requests &
value sets

value sets
Data Store

Data Component

Hazelcast
Client

Data
Store

Engine

Queues

value sets

requests

value sets

Figure 3: Interactions between software modules. Arrows indicate the direction of data

movement.

and that instance executes put, get, and remove operations on the data store404

on behalf of the client. As clients do not participate in the storage or man-405

agement of the entries in the data store, they require few computer resources406

and many clients may connect to a single instance. The native client shared407

library is compiled into the data component and runs as a set of threads408

inside the process in which the data component is running, similar to how409

the instances run within the data manager processes. Similarly, the data410

component’s engine (which implements the OpenMI and handles the config-411

uration file) has limited interaction with the client and may only instruct412

the client to connect and disconnect with an instance and put, get, or re-413

move entries. The client is otherwise isolated from the engine and the client414

20

threads maintain a direct and persistent network connection to the instance415

threads. The data component communicates with the data manager through416

the Hazelcast client-instance connection using two request queues managed417

by the instance. The component inserts both requests to retrieve value sets418

from web services and requests to store value sets in the data store into these419

queues and the data manager and its software modules process the requests.420

2.3. Providing input data to models421

2.3.1. Caching422

During the execution of a composition, several model components within423

a single composition may request identical value sets from a data component.424

In addition, model components in independently executing compositions on425

different cluster nodes may request the same value sets from different data426

components. In both cases it is advantageous for the data components to427

cache the value sets that they retrieve from the web services and to share428

those value sets across all the data components that are executing simulta-429

neously in different compositions across a cluster. It is also advantageous for430

the cached value sets to be persisted between executions as the same value431

sets may be needed on subsequent executions of a composition.432

When GetValues is invoked by a model component on a data component,433

the data component checks to see if the requested value set exists in the data434

store by creating the appropriate key and then performing a get operation435

on the data store using the key. If the data component successfully retrieves436

the value set from the data store then it is returned to the model component437

and the execution of the composition continues. If the value set is not in the438

data store then the data component inserts the key into the request queue.439

21

After the insertion is completed, the data component periodically checks the440

data store until the value set is available (during which the execution of the441

composition is paused). The data component relies on the retrieval module442

inside the data manager to obtain the requested value set from a web service443

and insert it into the data store.444

The retrieval module waits for a request to be inserted into the request445

queue. When a request is inserted by a data component, it is removed by446

the data manager provided that the amount of data in the local data store447

has not reached the maximum limit (as configured in the data component).448

The request queue may only hold a single request at-a-time and causes data449

components to wait if they attempt to insert a request when there is already450

a request in the queue. This prevents the data manager from becoming451

overwhelmed with requests. The data store is checked for the requested value452

set in case it was already retrieved while the data component was waiting to453

insert the request. If it is not, the retrieval module attempts to assemble the454

requested value set from other value sets that are already in the data store.455

The element set of a requested value set may intersect with the element456

sets of other value sets in the data store. As such, it may be possible to457

assemble the requested value set by extracting the necessary values from458

other value sets already in the data store whose element sets intersect with459

the element set of the requested value set. This maximizes the reusability of460

the cached data and minimizes the number of web service calls.461

The algorithm given in Fig. 4 is utilized by the retrieval module to as-462

semble value sets in such a way as to minimize the number of get operations463

performed on the data store. Each element of each element set is compared to464

22

for each (value v in request_value_set)
 for each (element_set s)
 for each (element e in s)
 if (v.element = e)
 list.add(e, s)

for each (element_set s in list)
 key = create_key(request_quantity, request_time, s)
 value_set = data_store.get(key)
 if (value_set is not null)
 for each (value v in value_set)
 for each (element e in request_element_set)
 if (v.element = e)
 result_value_set.add(v)

return result

Figure 4: Algorithm for assembling value sets.

the requested element set to determine whether the elements in the requested465

element set exist in other element sets. If all the elements in the requested466

element set can be found in other element sets, then the value set map is467

checked for each source element set to see if a value set for the requested468

time exists. If it does then the required values are collected from it. If all the469

values in the requested value set are found then the assembled value set is470

inserted as a new entry into the data store. This requires one get operation471

per source element set. In the case of a requested value set whose element472

set is a subset of another element set whose data is in the value set map, it473

would require one get operation to obtain the necessary data to assemble the474

value set. The maximum number of get operations that may be necessary is475

equal to the size of the value set being requested, which occurs in the case476

that each value is sourced from a different element set.477

23

Model
Component Engine Hazelcast

Client

Data Component

Queue Data Store Web
Service

Data Manager

GetValues
put(request) notify(request) send(request)

receive(response)put(value set)

get(value set) get(value set)

return(value set)return(value set)return(value set)

put(request)

Retrieval
Module

Hazelcast Instance

Figure 5: Sequence diagram of interactions involved in providing data from web services.

If a value set cannot be assembled from the values already in the data478

store, a web service call task is created for the request and added to a thread479

pool. Each task generates the appropriate web service request XML, calls480

the web service, and then parses the response into a value set that is inserted481

into the data store, as shown in Fig. 5. Multiple web service calls are issued482

simultaneously in a pipelined fashion to take advantage of multi-core and483

multi-host web services. The retrieval module limits the number of simulta-484

neous web service calls to the number of connected data components. This485

limit is necessary because data components may request value sets ahead-of-486

time (prefetch) which could result in the creation of so many threads that487

the system resources become exhausted.488

2.3.2. Prefetching489

The simulation of physical processes (especially those for which the OpenMI490

was initially designed) typically involve the calculation of output quantities491

24

over a simulation time period. A component typically steps forward through492

simulation time requesting value sets from the data component on each step.493

To avoid causing a model component to wait for a value set while the data494

component is retrieving it from a web service, the data component retrieves495

value sets before they are requested, a technique called prefetching.496

Throughout the execution of a composition the components are at approx-497

imately the same point in simulation time. This is because each component498

typically requires input data from the other components that reflect its cur-499

rent simulation time, causing those components to advance to the same point500

in simulation time. For this reason, all components should be prefetched to501

the same future point in simulation time.502

Prefetching relies on knowledge of what data will be needed before it is503

requested. It is not possible for the data component to obtain this informa-504

tion directly from model components, as the OpenMI does not support this505

functionality. The data component predicts what value sets will be requested506

in the future by observing what value sets have been requested in the past.507

Components that use a fixed-length time step request data from the data508

component at fixed intervals making it possible to identify these components509

and determine the length of their time steps. In such cases the data com-510

ponent can accurately predict the value sets that will be requested in the511

future. It is more difficult for the data component to predict the data needs512

of components that use a variable-length time step and is not addressed in513

this work. The data component prefetches all links to a common future point514

in simulation time (number of Julian days) given by: t = min{p+ i, e} where515

p is the earliest time to which all links have been prefetched, i is the longest516

25

Model
Component Engine Hazelcast

Client

Data Component

Queue Data Store Web
Service

Data Manager

DataChanged event

send(value sets)

return(value set)
put(value set)

GetValues

put(value set)

get(value sets)

return(value sets)

Delivery
Module

Hazelcast Instance

move(value set)

Figure 6: Sequence diagram of interactions involved in delivering data to web services.

request interval (i.e. longest time step) across all links, and e is the ending517

time of the composition.518

2.4. Delivering output data to web services519

The input exchange items of the data component may be linked to one or520

more model components within a composition. At initialization, the data521

component registers to be notified via a DataChanged event whenever a522

model component produces an output value set along any of its input links,523

which is typically raised after each time step. When the data component524

receives this notification it invokes the GetValues function on the model525

component to obtain a copy of the value set as shown in Fig. 6. The data526

component instructs the Hazelcast client to insert the value set into data527

queue within the Hazelcast instance that the client is connected to. This528

queue can only hold a single value set at-a-time so if a value set is in the529

queue, then additional insert attempts will wait until the value set is re-530

26

moved, causing the data component to wait, and in turn causing the model531

component to wait. The queue serves as a gate to prevent too much data532

from being inserted into the data store, which would be possible if the client533

inserted value sets directly into the data store. Whenever a value set is added534

to the queue, the data manager checks if there is available space in the local535

data store and if so moves the value set into the data store and sets a flag536

within the value set that indicates it is pending delivery to a web service.537

The amount of memory dedicated to the local data store is configurable via538

the data store configuration file and must be equivalent among all connected539

data stores (as required by Hazelcast).540

The delivery module periodically searches the local data store for value541

sets pending delivery and if there is a sufficient amount of data to be sent542

such that network resources will be utilized efficiently then the value sets are543

sent to the appropriate web service. The amount of data that is sent in each544

web service call is configured in the data store as a number of bytes, called545

the delivery size. The data component estimates the number of value sets546

to include in each web service call by estimating the the size of an encoded547

value set (as XML) via a constant per-value multiplier specific to each web548

service.549

The following algorithm is used by the delivery manager. The delivery550

thread periodically iterates over the entries in the local data store and checks551

whether each entry is pending delivery. If an entry is pending delivery it is552

copied into a priority queue and flagged as no longer needing delivery in553

the data store. The priority queue orders the value sets by earliest creation554

date first. After iterating through all the entries in the local data store555

27

and updating the priority queue, the priority queue for each web service556

is checked to determine whether there are a sufficient number of value sets557

whose encoded size is greater than the delivery size. If so, a sufficient number558

of value sets are removed from the priority queue to meet the delivery size559

and a thread pool task is created that serializes the value sets into the XML560

encoding used by the web service and calls the web service. The process561

repeats until both the simulation is completed and the number of entries562

delivered is equal to or greater than the number of entries inserted into the563

local buffer. The latter ensures that each data component delivers a fair564

share of the entries and that only data components with excess capacity565

deliver more entries then they collect.566

The delivery size provides a means for both the regulation of network567

efficiency and the control of the delay between the collection of a value set568

and its delivery to a web service. The delivery manager attempts to remove569

enough value sets from the buffer to meet the delivery size before sending570

them in a single web service call. This may cause entries to remain in the571

buffer for extended periods of time. This may be acceptable in cases in which572

the data is being archived, but in cases where the data is consumed as the573

simulation is being carried out it may be necessary to minimize the duration574

that an entry may reside in the buffer before it is delivered, at the expense575

of efficient network utilization. By setting the delivery size to 0, value sets576

are sent individually as quickly as possible. Note that the delivery module577

does not attempt to send more value sets than necessary to meet the delivery578

size because this would require additional parameterization of a maximum,579

since data may be inserted into the data store at a rate that is faster than580

28

the delivery module is able to remove it, preventing the delivery of data.581

The amount of memory available to the data store is finite and once582

exhausted the operation of the data store will pause, since it relies on the583

ability to store data. The effectiveness of the cache increases with the amount584

of data in the cache, so it is beneficial to allow the data store to be filled as585

much as possible without impeding the basic operation of the data store. For586

these reasons a thread within the data manager periodically checks the local587

buffer and if the data size is greater than 90% of the maximum size, then588

an eviction is performed. The least accessed 15% of the entries are removed589

from the buffer that (1) have been sent, or (2) been accessed at least once,590

or (3) have been downloaded and cached. This prevents cached data, which591

may or may not be used in the future, from preventing data retrieval from592

web services or collection from components. In the case that the data store593

is mostly full of unsent data, downloaded data is purged leaving only the594

unsent data and if no memory is available, a request will remain in the data595

queue blocking data components from adding more data requests. As data is596

delivered to the web services sent data will be purged and data components597

will again be able to insert requests into the data queue.598

3. Performance study599

To evaluate the scalability and efficiency of the data component we mea-600

sured a set of performance metrics for varying numbers of linked models601

simultaneously executing across a compute cluster.602

29

Consumer
Component

Producer
Component

Data
Component

Trigger

QuantityA

QuantityA
QuantityB

Figure 7: The composition used in the performance study. Arrows indicate the direction

of data transfer between the components.

3.1. Baseline configuration603

We created a composition that includes a data component linked to two604

model components such that the data component provides input to a con-605

sumer component and collects output from a producer component as illus-606

trated in Fig. 7. The producer and consumer components serve as placehold-607

ers for model components and although they are capable of accepting and608

providing exchange items and advancing through simulation time, they do609

not perform any calculations but rather pause for 1 second on each time step,610

which we refer to as the time step calculation time. They discard the data611

they receive as input and produce constant-valued data as output. We con-612

figured the components to advance their simulation time by one day on each613

time step and configured the composition for a time horizon of 7 months,614

thus each component performs 212 time steps in each simulation. We empir-615

ically determined that using a higher number of time steps does not impact616

the performance results. The components exchange value sets corresponding617

30

to an element set of 1000 elements as this value is a reasonable number of618

grid cells for environmental models and is small enough to allow for a large619

number of value sets to be stored in the data store for performance eval-620

uation. We configured the data component to deliver the output from the621

producer component to a web service hosted within the compute cluster and622

provide input to the consumer from the service. The data component thus623

provides 212 value sets to the consumer component and collects 212 value624

sets from the producer component during the execution of a single instance625

of the composition, which we refer to as a simulation.626

A simulation begins when the trigger invokes GetValues on the consumer627

component for its starting simulation time. The consumer component in turn628

calls GetValues on both the producer component (which advances its time)629

and data component which return the requested value sets to the consumer630

component which then advances its time. The generation of the value set by631

the producer raises a DataChanged event which causes the data component632

to call GetValues on the producer component to obtain the new data. The633

trigger repeatedly invokes GetValues on the consumer until the simulation634

time of the consumer reaches the configured end time. We refer to the du-635

ration of time that an instance of the composition spends executing as the636

simulation runtime. As the components perform time steps sequentially and637

pause for 1 second on each step the simulation runtime of the baseline config-638

uration would be 424 seconds if the data component and exchanges between639

the components incur zero time.640

We executed the simulations on an onsite Linux-based Beowulf compute641

cluster for the performance study. To limit variability in the results due642

31

to differences between the hardware specifications of the compute nodes we643

utilized a single class of machines that had dual 8-core Intel Xeon E5-2690644

processors with 64 GB of memory and were connected via gigabit Ethernet.645

A virtualized Windows-based server with a 4-core 2.7 GHz processor and 8646

GB of memory hosted the web services and was connected to the compute647

nodes via gigabit Ethernet.648

Access to the cluster nodes is provided via a job scheduler (Sun Grid En-649

gine) to which requests are made for resources (number of processor cores,650

amount of memory, and maximum runtime) and when they become available651

a set of scripts provision the nodes as necessary and then execute a set of652

simulations. The job scheduler executed each set of simulations on multiple653

nodes utilizing an average of approximately 5 cores on each node. We config-654

ured the job scheduler to reserve one core for each data manager and one core655

for every 4 simulations. Scheduling several simulations on each core made it656

possible to execute a greater number of simulations than there were cores.657

We verified that collocating several simulations on a single core did not affect658

the performance results in our experimental configuration (likely because the659

producer and consumer components require few computer resources).660

The components are implemented in the C# programming language based661

on the OpenMI 1.4 software development kit and were executed using the662

OmiEd application (via the command line). We chose version 1.4 of the663

OpenMI because the model components in our case study rely on libraries664

based on this version (Bulatewicz et al., 2013; Castronova and Goodall, 2010)665

although we are actively developing an implementation of the data compo-666

nent for version 2.0 of the OpenMI as well. The data manager is imple-667

32

mented in the Java programming language because this is the language that668

Hazelcast is implemented in. The web service is implemented in the PHP669

programming language and is hosted by the Apache HTTP server. We de-670

veloped a custom REST-based web service and minimal XML data encoding671

to avoid any bias that a more complex encoding may have on the results.672

The web service parses the XML in each request and returns constant-valued673

data in its response.674

The delivery size that maximizes throughput when data is sent from the675

data store to the web service is dependent on several factors including net-676

work latency, available bandwidth, and software performance. We conducted677

a series of measurements to empirically determine an appropriate delivery size678

for our experimental configuration. We found that the maximum throughput679

between a benchmark application and the web service was 47 MB/s when at680

least 50 MB of data was sent. As the XML serialization of a 1000-element681

value set requires 49 KB, the data store would have to send 1498 value sets682

in each web service call to achieve maximum throughput. If value sets were683

collected at a rate of 1 per second then they would be delivered every 25684

minutes. To increase the rate at which value sets were delivered to the web685

service while still maintaining good network efficiency we decided to use a686

delivery size of 11 MB which achieves 50% of the maximum network through-687

put.688

3.2. Scalability689

To verify that the design of the data component and data manager are ef-690

ficient and capable of high performance when there are large numbers of data691

components we measured the average simulation runtime for varying numbers692

33

of simulations and data managers. Each simulation used a unique scenario693

identifier so that its input and output value sets were distinct. The results are694

presented in Fig. 8 (top). For a given number of data managers, the average695

simulation runtime increased as the number of simulations increased. This is696

because the data component pauses a simulation while it is waiting for the697

data manager to process its requests. When all simulations were supported698

by a single data manager the rate at which the average simulation runtime699

increased was most closely described by the function 0.0003× (n1.5) where n700

is the number of simulations (R2 = 0.996). In the case of 4 data managers701

the rate at which the runtime increased was most closely described by the702

function 0.4× e0.001×n (R2 = 0.994). Based on these functions we expect the703

average simulation runtime to increase at a greater rate when there are more704

than 1000 simulations.705

The number of data managers supporting the simulations had a varying706

impact on the average simulation runtime. Increasing the number of data707

managers from 1 to 4 significantly reduced the average simulation runtime,708

while increasing further to 8 only resulted in a small reduction for higher709

numbers of simulations. Increasing the number of data managers further to710

16 slightly increased the average simulation runtime due to the additional711

overhead incurred by the management of the distributed data store. We712

therefore estimate that the ideal ratio for our experimental configuration713

was approximately 1 data manager per 250 simulations.714

The duration of time between when a value set is collected by a data715

component and when it is delivered to the web service, the delivery time,716

is a function of (1) the rate at which value sets are collected by the data717

34

0 50 100 150 200 250
number of cores

0 200 400 600 800 1000
−1

0

1

2

3

4

5

6

7

8

9

10

av
er

ag
e

si
m

ul
at

io
n

ru
nt

im
e

(s
 ×

10
3)

number of simulations

0.0003×n1.5

1 data mgr
2 data mgr
4 data mgr

0 50 100 150 200 250
number of cores

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

av
er

ag
e

si
m

ul
at

io
n

ru
nt

im
e

(s
 ×

10
3)

number of simulations

 0.4×e0.001×n

 4 data mgr
 8 data mgr
16 data mgr

0 50 100 150 200 250
number of cores

0 200 400 600 800 1000
0

20

40

60

80

100

120

av
er

ag
e

de
liv

er
y

tim
e

(s
 ×

10
3)

number of simulations

1 data mgr
2 data mgr
4 data mgr

0 50 100 150 200 250
number of cores

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

av
er

ag
e

op
er

at
io

ns
 p

er
 s

ec
on

d
(×

10
3)

number of simulations

1 data mgr
2 data mgr
4 data mgr

Figure 8: Scalability results.

35

components connected to a data manager, (2) the size of the value sets,718

and (3) the delivery size that the data manager is configured to use. For our719

experimental configuration the size of a value set with 1000 elements encoded720

in XML was 49 KB and the delivery size was 11 MB, so the data manager only721

sent data to the web service when it found 230 unsent value sets in its local722

data store. For low numbers of simulations the rate at which value sets were723

collected and added to the data store was low, resulting in the data manager724

delaying the sending of the data, as shown in Fig. 8 (bottom-left). Higher725

numbers of data managers amplified this effect, further reducing the rate at726

which value sets were added to each data manager and further increasing the727

delivery time. For high numbers of simulations, the delivery time was low due728

to the faster rate at which value sets were collected by data components and729

added to the data store which ensured there was always a sufficient number730

of unsent value sets. In this case the delivery time increased slightly as the731

number of simulations increased because greater numbers of value sets in the732

data store increased the search time for locating unsent value sets.733

The average number of operations per second (put, get, and remove) per-734

formed by Hazelcast on the hashmap that stores the value sets increased735

with the number of compositions as shown in Fig. 8 (bottom-right). The736

maximum number of operations per second reached in our experimental con-737

figuration was approximately 50000 when a single data manager was used738

and was significantly less for greater numbers of data managers.739

3.3. Caching740

To investigate the effect of caching on the performance of the data compo-741

nent we executed 16 simulations connected to a single data manager and ad-742

36

justed the baseline configuration in two ways that facilitate caching. Caching743

is most effective in reducing the average simulation runtime when (1) the in-744

put value sets needed by the simulations are in the data store prior to when745

they are requested, and (2) the time required to retrieve a value set from a746

web service is non-zero. We therefore configured the simulations such that747

one simulation was executed before the others and the web service waited748

3 s before responding to each request (the web service response time) for749

a value set. We refer to the time required to retrieve a value set from a750

web service, including the time spent generating the request, calling the web751

service, and processing the response, as the retrieval time. We measured752

the average simulation runtime and amount of data retrieved from the web753

service for both the baseline and alternate configurations with and without754

caching (Fig. 9). For the “caching” scenario we assigned a common scenario755

identifier to all the simulations causing them to all request identical input756

data and in the “no caching” scenario we assigned different identifiers caus-757

ing each to request distinct input data. The average simulation runtime for758

the alternate configuration in the “no caching” scenario was approximately759

2.5 times higher than in the baseline configuration due to the additional 3760

s delay incurred for each of the 212 web service requests to retrieve data.761

For the baseline configuration the average simulation runtime was similar in762

both the “caching” and “no caching” scenarios because the retrieval time763

was very low. For the alternate configuration, however, the average simu-764

lation runtime in the “caching” scenario was 59.8% lower than in the “no765

caching” scenario because the retrieval time was higher (approximately 3 s).766

In both configurations the amount of data retrieved from the web service in767

37

baseline alternate
0

5

10

15

20

25

av
er

ag
e

da
ta

 re
tri

ev
ed

 (M
B)

no caching
caching

baseline alternate
0

0.2

0.4

0.6

0.8

1

1.2

1.4

av
er

ag
e

si
m

ul
at

io
n

ru
nt

im
e

(s
 ×

10
3)

no caching
caching

Figure 9: Caching results.

the “caching” scenario was 93.8% lower than in the “no caching” scenario be-768

cause the simulations requested identical input data and thus only 1/16th the769

amount of data had to be retrieved from the web service. Thus the reduction770

in the average simulation runtime afforded by caching is dependent upon the771

magnitude of the retrieval time, while the reduction in the amount of data772

transferred is a function of the size of the value set. In general, the amount773

by which the average simulation runtime can be reduced is the percentage of774

the runtime that is due to the retrieval of the data (i.e. the retrieval time).775

3.4. Prefetching776

To investigate the effect that prefetching has on the performance of the777

data component we enabled the prefetching feature and measured the average778

runtime for 16 and 256 simulations connected to a single data manager where779

the simulations were configured such that the time step calculation time and780

web service response time were the same (2 s). This allows for the retrieval781

38

base−16 base−256 alt−16 alt−256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

av
er

ag
e

si
m

ul
at

io
n

ru
nt

im
e

(s
 ×

10
3)

prefetch off
prefetch on

base−16 base−256 alt−16 alt−256
0

10

20

30

40

50

60

70

pr
ef

et
ch

 a
tte

m
pt

s
(×

10
3)

success
failure

Figure 10: Prefetching results.

of a value set (which involves generating the request, calling the web service,782

and processing the response) to take place while the components (producer783

and consumer) are calculating their time steps. The results of the alter-784

nate configuration as compared to the baseline configuration are presented785

in Fig. 10. In all cases, prefetching reduced the average simulation runtime786

because some portion of the data retrieval was performed during the time787

step calculation rather than waiting until each time step was calculated be-788

fore requesting the data. In the baseline configuration with 16 simulations,789

prefetching resulted in a small decrease in the average simulation runtime790

(3.4%) because the retrieval time was small and hence only a small amount791

of time was saved by performing the retrieval during the time step calcula-792

tion. In the alternate configuration with 16 simulations, prefetching resulted793

in a large decrease in the runtime (43.0%) because the retrieval time was794

high (due to the increased web service response time) and thus a significant795

39

amount of time was saved by performing the retrieval during the time step796

calculation. In the case of 256 simulations, the reduction in the average sim-797

ulation runtime was less in both configurations due to the number of prefetch798

failures that were a result of the data component’s prioritization of requests799

for data over requests for prefetching data.800

The reduction in the average simulation runtime possible by prefetching801

is thus a function of the relative difference between the retrieval time and802

the length of time between subsequent requests made to the data component803

(i.e. the sum of the calculation times of all components for a time step). In804

cases in which the retrieval time is less than the total amount of time the805

components spend calculating a time step, the runtime of the simulation is806

not affected by the web service calls and is masked by the time step calcula-807

tion time (assuming the data manager does not reject the prefetch requests).808

In general, the amount by which the average simulation runtime can be re-809

duced is the percentage of the runtime that is due to the retrieval of the data810

(i.e. the retrieval time). In cases in which the retrieval time is greater than811

the time spent calculating time steps, the average simulation runtime will812

increase proportionally according on the relative difference between them.813

4. Case study: A groundwater sustainability challenge814

To demonstrate how the data component may be incorporated into a815

modeling study we present how we are utilizing it in an ongoing case study816

to provide input data from an online database to the components of a linked817

model executing on a desktop computer.818

40

weather

crop
yield

well
aquifer

depth to
water

pricesparcel

saturated
thickness

crop choice

Figure 11: Conceptualization of an irrigated agricultural system.

4.1. Study area819

The communities of western Kansas in the Central Plains of the United820

States have relied upon the availability of groundwater for irrigated agricul-821

ture for 50 years (Fig. 11). The rate at which water is extracted from the822

Ogallala Aquifer underlying the region has exceeded the rate at which it nat-823

urally recharges resulting in a gradual decline in the volume of water stored824

in the aquifer. In some areas it is no longer possible to extract water from825

the aquifer due to the decreased saturated thickness, a trend that will con-826

tinue to spread throughout the region unless agricultural practices transition827

to sustainable rates of water consumption. As this transition impacts the828

closely intertwined economy and ecology of the region it is essential that it829

be guided by multidisciplinary integrated assessment.830

We consider the relevant natural and human processes in this system831

to be (1) the movement and volume of groundwater, (2) the choice of crop832

planted, and (3) the growth of the plants. Building on previous experience in833

integrated modeling for irrigated agriculture (Bulatewicz et al., 2010, 2013)834

we have developed three new model components that simulate these processes835

41

and have created a prototype linked model integrating them.836

4.2. Model components837

The crop choice component is an iterative Positive Mathematical Pro-838

gramming (PMP) model (Howitt, 1995) that simulates farmers allocation of839

arable land to different crops. The model operates on an annual time step,840

with each execution predicting farmers choices in a single growing season.841

In addition to harvested crop prices and crop-specific costs of production,842

the model accepts as inputs the current (county average) depth to water and843

saturated thickness of the aquifer. Depth to water affects water extraction844

costs, while saturated thickness affects the pumping rate of wells, which in845

turn creates an upper bound on the annual extraction of irrigation water.846

The model simulates land allocations as the solution to a constrained opti-847

mization problem that represents farmers profit-maximizing mix of land uses,848

given price conditions, water extraction costs, and the constraints on water849

and land availability. The component has input exchange items for satu-850

rated thickness and depth to water and output items for the predicted acres851

planted to each crop (wheat, corn, sorghum, soybeans, and alfalfa). Details852

on the model development, calibration, and data sources are in Clark (2008)853

and Garay et al. (July 2010). The model is implemented in MATLAB and854

interoperability with the OpenMI is provided by the Simple Script Wrapper855

(Bulatewicz et al., 2013).856

The groundwater model provides the groundwater elevation (head) as857

a function of space and time. For this application, we have developed an858

OpenMI component for the Hydrologic Response Function (HRF) approach859

from Steward et al. (2009). Briefly, the aquifer is treated as a sloping base860

42

with rectangular cells used to gather pumped water-use within cells that861

contain uniform aquifer properties Steward (2007). Our OpenMI code fully862

implements the HRF equations and enables the drawdown associated with863

pumping to be communicated with neighboring cells. This approach was864

chosen as it has been shown to accurately reproduce the cones of depression865

formed by groups of wells in the study area (Steward et al., 2009), and the866

code executes much faster than other approaches based upon the Analytic867

Element Method (Steward et al., 2008) and finite gridded domain approaches868

(Steward and Allen, 2013). We also incorporated the groundwater added to869

the domain through leakage from surface water identified by Ahring and870

Steward (2012). This was accomplished by adding recharge to cells that871

coincide with rivers and adjusting the recharge rates until groundwater sur-872

faces matched observations (see Steward et al. (2009) for a discussion of these873

recharge volumes). The component has an input exchange item for irrigated874

water-use and output exchange items for saturated thickness and depth to875

water. The model is implemented in Scilab and interoperability with the876

OpenMI is provided by the Simple Script Wrapper.877

The crop production component provides crop yield and irrigated water878

use data as simulated by the Erosion-Productivity Impact Calculator (EPIC)879

model (Williams, 1995). EPIC is a process-based generalized crop model that880

simulates daily crop growth by predicting plant biomass through the simu-881

lation of carbon fixation by photosynthesis, maintenance respiration, and882

growth respiration. In a previous work (Bulatewicz et al., 2009) we enabled883

this legacy model to work with OpenMI by creating a wrapper component884

that executed the unmodified model program on-demand. For this new com-885

43

saturated thickness

depth to water

alfalfa acreage (irr)
corn acreage (irr / dry)

sorghum acreage (irr / dry)

soybean acreage (irr)

irrigated water use

weather set ID
soil type ID

Groundwater
Model

Crop Choice
Model

Data
Component

Crop
Production

Model

weather station ID

wheat acreage (irr / dry)

Figure 12: Component linkages. Data is transferred in the direction of the arrows.

ponent we took an alternative approach to model reuse in which we executed886

the original model program for all combinations (2500) of the primary model887

inputs of interest (soil, crop, management, weather) and created an index of888

the model output data that the component utilizes to lookup and provide889

the data to other model components. The input exchange items of the com-890

ponent are acreage per crop, soil ID, and weather ID. The output items are891

crop yield and irrigated water-use. The model operates on an annual time892

step over a 2-dimensional grid and is implemented in C# using the Simple893

Model Wrapper (Castronova and Goodall, 2010). We calibrated the model894

for use in western Kansas in an earlier work (Bulatewicz et al., 2009).895

4.3. Linked model design896

There are a total of 14 links between the models as illustrated in Fig. 12.897

The linked model prototype uses an element set consisting of a single ele-898

44

ment that represents Seward County in southwestern Kansas. At the start899

of each year the crop production model requests the planted acreage of each900

crop from the crop choice model and the soil and weather information from901

the data component. The data component retrieves the data from an online902

database and provides it to the crop production model. The crop choice903

model requests the saturated thickness and depth to water from the ground-904

water model for the previous year which in turn requests the irrigated water905

use from the crop production model for that year. After receiving the re-906

sponse the groundwater model calculates the new saturated thickness and907

depth to water and provides them to the crop choice model which in turn908

predicts the crop acreages and provides them to the crop production model.909

The crop production model then calculates the crop yield and irrigated water-910

use for the current year.911

4.4. Using the data component912

To create the linked model we began by adding the 3 models to a new913

composition using the OmiEd application and then added the appropriate914

links between them. We then configured the data component by (1) defining915

the necessary output exchange items, and (2) specifying the information916

about the web service from which they should be retrieved. The exchange917

items and web service information are defined within the data component’s918

configuration file as shown in Fig. 13. The format of the configuration file919

is based on that of the Simple Model Wrapper and was extended to include920

web service information. The element set and quantity of each exchange921

item (as well as the units information, not shown in the figure) is listed in922

the configuration file as well as the type, URL, and list of quantities provided923

45

<Configuration>
 <ExchangeItems>
 <OutputExchangeItem>
 <ElementSetID>Seward</ElementSetID>
 <Quantity><ID>WeatherStationID</ID></Quantity>
 </OutputExchangeItem>
 <OutputExchangeItem>
 <ElementSetID>Seward</ElementSetID>
 <Quantity><ID>WeatherDataID</ID></Quantity>
 </OutputExchangeItem>
 <OutputExchangeItem>
 <ElementSetID>Seward</ElementSetID>
 <Quantity><ID>SoilTypeID</ID></Quantity>
 </OutputExchangeItem>
 </ExchangeItems>
 <TimeHorizon>
 <StartDateTime>2012-01-01T00:00:00</StartDateTime>
 <EndDateTime>2040-08-01T00:00:00</EndDateTime>
 <TimeStepInSeconds>86400</TimeStepInSeconds>
 </TimeHorizon>
 <WebServices>
 <WebService>
 <Type>WaterOneFlow</Type>
 <Url>http://host/Baseline/Service_10.asmx</Url>
 <RetrievableQuantities>
 <QuantityID>WeatherStationID</QuantityID>
 <QuantityID>WeatherDataID</QuantityID>
 <QuantityID>SoilTypeID</QuantityID>
 </RetrievableQuantities>
 </WebService>
 </WebServices>
</Configuration>

Figure 13: The data component configuration file (partial).

46

and accepted by each web service. The quantity ID specified in each output924

exchange item must appear in the list of RetrievableQuantities for one of the925

web services and each input item must appear in the DeliverableQuantities926

After creating the configuration file we added the data component to the927

composition and added links from each of its output exchange items to the928

appropriate input of the crop production component.929

The URL specified in the configuration file is that of a CUAHSI HIS930

WaterOneFlow web service that was hosted on a virtualized server that we931

setup on the cluster network and was publicly accessible via the Internet.932

The web service was connected to a SQL Server database that was also933

hosted on the server and used the Observations Data Model (Horsburgh et al.,934

2008), which is a relational data model for the storage and retrieval of time935

series hydrologic observations and associated metadata. The data component936

provides interoperability between the ODM/WaterOneFlow web service and937

the OpenMI by mapping their respective data models to one another in a938

similar way as Castronova et al. (2013b) (e.g. mapping quantities to variables939

and sites to elements). Thus, the IDs of the elements within the element sets940

of the input and output exchange items specified in the configuration file941

must exist as sites in the database (mapped to SiteCode) and the quantity942

IDs of the exchange items must exist as variables in the database (mapped943

to VariableName). The WaterOneFlow web service returns data as time944

series whereas exchanges between OpenMI components require space series,945

so had there been multiple elements in the element set the data component946

would have made multiple web service calls for each time step (one for each947

element).948

47

2010 2015 2020 2025 2030 2035 2040
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

year

water use (m3×108)
yield (T×107)
sat thick (m×103)

Figure 14: Output from the linked model for 3 indicators.

The output of the linked model simulation for 3 indicators is shown in949

Fig. 14 (does not include wheat data as it is not currently available in the crop950

production component). The county-wide total crop yield and irrigated water951

use varied from year to year according to the weather while the saturated952

thickness of the aquifer decreased at a constant rate.953

5. Conclusions954

We have presented the design of a general-purpose data component for955

the OpenMI, evaluated its performance, and demonstrated its application956

in a modeling study. The data component can mitigate data management957

challenges in modeling and simulation by serving as a bridge between model958

components and online services minimizing the reliance on data files and959

ad-hoc scripting. We adapted three techniques to the unique design of the960

OpenMI to enable efficient operation: caching, prefetching, and buffering,961

48

Table 1: Summary of performance study results. (*estimated)

Technique Improvement

Caching 1% - 29%

Prefetching 3% - 43%

Buffering* 5% - 33%

Dimension Cost Per Time Step

Time 0.14 s - 3.78 s

Data 131 KB

making it suitable for use on both desktop computers and high-performance962

compute clusters.963

The data component is added to a composition and linked to model com-964

ponents in same way that model components are linked to one another. The965

scientist configures, and re-configures the data component for the input and966

output exchange items necessary for any given set of model components based967

on the data available via web services. It relies on a data manager program968

that communicates with web services and manages a distributed data store969

shared across all the data managers executing on a compute cluster. The970

data retrieved from web services is cached in the data store and the data971

collected from model components is buffered in the data store before being972

delivered to web services.973

We evaluated the performance of the data component in terms of scal-974

ability and the effectiveness of caching and prefetching in minimizing the975

simulation runtime. The results are summarized in Table 1. The increase in976

simulation runtime incurred by the data component (as compared to using977

local data files) ranged from 0.14 s for 16 simulations to 3.78 s for 1000 simu-978

lations for each time step. The data transferred to and from the web service979

49

was 131 KB per time step for a value set of 1000 values.980

Caching can have a significant impact on the runtime of simulation in981

some cases and little or no impact in other cases. We demonstrated this via982

two configurations which resulted in a 1% to 29% reduction in the average983

simulation runtime. This range only serves as an example of possible perfor-984

mance, as the actual impact is a direct result of the retrieval time and the985

number of times model components request identical data.986

Prefetching can also have a significant impact on the runtime of a simula-987

tion, but through different means than caching. Prefetching is only effective988

when the time step processing time of a model component is comparable to989

the retrieval time thus making it possible to overlap the model execution990

with the retrieval of data. We demonstrated this via two configurations in991

which the runtime was reduced by only 3% when there was no overlap and992

43% when there was full overlap. In addition, prefetching is less effective993

when a data manager is under high utilization.994

Buffering always reduces the runtime of a simulation where the reduction995

is directly proportional to the web service response time. Although the im-996

pact of buffering on the simulation runtime cannot be measured empirically997

(because buffering is inherent in the design of the data manager) its impact998

can be estimated by adding the time spent sending the data on each time999

step. For the experimental configuration, in which the model components1000

spend 2 s processing each time step, if the time spent sending data on each1001

time step was 0.1 s then the reduction in runtime due to buffering would1002

be 5% whereas if the time spent sending data was 1.0 s then the reduction1003

would be 33%.1004

50

Based on the results of the performance study, it can be expected that the1005

simulation runtime will increase as the number of simulations is increased,1006

and that buffering always results in improved runtimes while caching and1007

prefetching may result in improvements depending upon the situation. Over-1008

all, the runtime overhead of the data component is primarily determined by1009

the web service response time and to a lesser degree the time step processing1010

time of the model components and the value set size (as the data transfer size1011

and parsing time are influenced by it). As the web service response time in-1012

creases, the runtime increase incurred by the data component becomes larger1013

while at the same time the benefit of buffering and the potential benefit of1014

caching and prefetching increase as well. In general, the percentage of the1015

runtime that is due to the web service calls is equivalent to the reduction that1016

would be achieved in cases in which caching and prefetching are effective.1017

We therefore conclude that the design of the data component meets the1018

three requirements identified in Section 2. Standards for web services make1019

it possible for the component to be configured and reconfigured as necessary1020

to meet the needs of different linked model configurations and different web1021

services. The increase in simulation runtime incurred by the data component1022

(as compared to using local data files) is reasonable and in some cases can be1023

eliminated by caching and prefetching data. The overall performance of the1024

data component is reasonable for large numbers of simultaneous simulations.1025

As the importance of data availability, interoperability, and transparency1026

continue to rise, so too does the need for software tools that facilitate these.1027

General-purpose tools that intelligently and efficiently provision, collect, and1028

deliver data will become an essential part of OpenMI linked models on desk-1029

51

top computers and compute clusters alike and this work provides a starting1030

point for such tools.1031

Acknowledgements1032

This work was supported by the National Science Foundation (grants1033

GEO0909515, EPS0919443, EPS1006860, CNS1126709) and the Ogallala1034

Aquifer Project of the USDA/ARS. Access to the Beocat compute cluster at1035

the Dept. of Computing and Information Sciences at Kansas State University1036

was appreciated. Any findings, opinions, conclusions, or recommendations1037

expressed herein are those of the authors and do not necessarily reflect the1038

views of any funding units.1039

52

Appendix A. Software availability1040

Software name: DataComponent

Developer: GRoWE/Kansas State University

Contact address: 234 Nichols Hall, Kansas State University,

Manhattan, KS, 66502, 785-532-6350

E-mail: tombz@ksu.edu

Year first available: 2013

Hardware required: Architecture independent

Required software: Windows/Linux

Program language: C#

Program size: 2 MB

Availability: Download available under MIT License at:

http://code.google.com/p/data-component

Cost: Free

1041

References1042

Ahring, T.S., Steward, D.R., 2012. Groundwater surface water interactions1043

and the role of phreatophytes in identifying recharge zones. Hydrology and1044

Earth System Sciences 16, 4133–4142.1045

Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P.J., Silva,1046

C.T., Freire, J., 2005. Vistrails: Enabling interactive multiple-view visu-1047

alizations. Visualization Conference, IEEE 0, 18.1048

Bulatewicz, T., Allen, A., Peterson, J.M., Staggenborg, S., Welch, S.M.,1049

Steward, D.R., 2013. The simple script wrapper for openmi: Enabling1050

53

interdisciplinary modeling studies. Environmental Modelling & Software1051

39(2013), 283–294.1052

Bulatewicz, T., Andresen, D., 2011. Efficient data access for open model-1053

ing interface (openmi) components, in: Proceedings of the International1054

Conference on Parallel and Distributed Processing Techniques and Appli-1055

cations (PDPTA) Volume 1, ed. H. R. Arabnia, CSREA Press, Las Vegas,1056

Nevada, USA, July 18-21, pp. 822–828.1057

Bulatewicz, T., Andresen, D., 2012. Efficient data collection from Open1058

Modeling Interface (OpenMI) components, in: Proceedings of the Interna-1059

tional Conference on Parallel and Distributed Processing Techniques and1060

Applications (PDPTA) Volume 1, ed. H. R. Arabnia, CSREA Press, Las1061

Vegas, Nevada, USA, July 16-19, pp. 53–59.1062

Bulatewicz, T., Jin, W., Staggenborg, S., Lauwo, S.Y., Miller, M., Das, S.,1063

Andresen, D., Peterson, J., Steward, D.R., Welch, S.M., 2009. Calibration1064

of a crop model to irrigated water use using a genetic algorithm. Hydrol1065

Earth Syst Sci 13, 1467–1483.1066

Bulatewicz, T., Yang, X., Peterson, J.M., Staggenborg, S., Welch, S.M.,1067

Steward, D.R., 2010. Accessible integration of agriculture, groundwater,1068

and economic models using the open modeling interface (openmi): method-1069

ology and initial results. Hydrology and Earth System Sciences 14(3),1070

521–534.1071

Cassandra, 2013. Cassandra. Http://cassandra.apache.org.1072

54

Castronova, A.M., Goodall, J.L., 2010. A generic approach for developing1073

process-level hydrologic modeling components. Environmental Modelling1074

& Software 25(2010), 819–825.1075

Castronova, A.M., Goodall, J.L., Elag, M.M., 2013a. Models as web services1076

using the Open Geospatial Consortium (OGC) Web Processing Service1077

(WPS) standard. Environmental Modelling & Software 41(0), 72–83.1078

Castronova, A.M., Goodall, J.L., Ercan, M.B., 2013b. Integrated modeling1079

within a Hydrologic Information System: An OpenMI based approach.1080

Environmental Modelling & Software 39(0), 263–273. Thematic Issue on1081

the Future of Integrated Modeling Science and Technology.1082

Chandrasekaran, S., Silver, G., Miller, J., Cardoso, J., Sheth, A., 2002. Web1083

service technologies and their synergy with simulation. Winter Simulation1084

Conference 1, 606–615.1085

Clark, M.K., 2008. Effects of high commodity prices on western kansas crop1086

patterns and the ogallala aquifer. Unpublished M.S. Thesis. Department1087

of Agricultural Economics, Kansas State University.1088

Garay, P.V., Peterson, J.M., Golden, B.B., Smith, C.M., July 2010. Dis-1089

aggregated spatial modeling of irrigated land and water use, in: Selected1090

Presentation at the Agricultural and Applied Economics Association An-1091

nual Meeting, Denver.1092

Globus Online, 2013. Globus online. http://www.globusonline.org.1093

Globus Toolkit, 2013. GridFTP user’s guide. http://www.globus.org.1094

55

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water1095

resource systems using a service-oriented computing paradigm. Environ-1096

mental Modelling & Software 26(5), 573–582.1097

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: Open mod-1098

eling interface. J Hydroinform 9(3), 175–191.1099

Horak, J., Orlik, A., Stromsky, J., 2008. Web services for distributed and1100

interoperable hydro-information systems. Hydrol. Earth Syst. Sci. 12, 635–1101

644.1102

Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I., 2008. A1103

relational model for environmental and water resources data. Water Re-1104

sources Research 44, W05406.1105

Howitt, R.E., 1995. Positive mathematical programming. American Journal1106

of Agricultural Economics 77, 329–342.1107

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn,1108

T., 2006. Taverna: a tool for building and running workflows of services.1109

Nucleic Acids Research 34(Web Server issue), 729–732.1110

J. S. Horsburgh, D. G. Tarboton, M.P.D.R.M.I.Z.D.V., Whitenack, T., 2009.1111

An integrated system for publishing environmental observations data. En-1112

vironmental Modelling & Software 24(8), 879–888.1113

Maidment, D.R., 2008. Bringing water data together. Journal of Water1114

Resources Planning and Management 134(2), 95–96.1115

Memcached, 2013. Memcached. Http://memcached.org.1116

56

OpenMI Association, 2010. News and announcements.1117

http://www.openmi.org/archives/archived-news-and-announcements/2010.1118

Ozturk, T., 2010. Scalable data structures for java, in: Devoxx, Metropolis1119

Antwerp Belgium.1120

Portele, C., 2007. Opengis geography markup language (GML) encoding1121

standard, open geospatial consortium. OGC 07-036.1122

Pullen, J.M., Brunton, R., Brutzman, D., Drake, D., Hieb, M., Morse, K.L.,1123

Tolk, A., 2005. Using web services to integrate heterogeneous simulations1124

in a grid environment. Future Gener. Comput. Syst. 21, 97–106.1125

Rajasekar, A., Wan, M., Moore, R., Schroeder, W., 2006. A prototype rule-1126

based distributed data management system, in: HPDC workshop on Next1127

Generation Distributed Data Management, Paris, France.1128

Shasharina, S., Li, C., Pundaleeka, R., Wang, N., Wade-Stein, D., Schissel,1129

D., Peng, Q., 2006. HDF5WS – web service for remote access of simulation1130

data. APS Meeting Abstracts , 2014.1131

Steward, D.R., 2007. Groundwater response to changing water-use practices1132

in sloping aquifers. Water Resources Research 43, W05408:1–12.1133

Steward, D.R., Allen, A.J., 2013. The analytic element method for rectan-1134

gular gridded domains and application to the ogallala aquifer. Advances1135

in Water Resources in review.1136

Steward, D.R., Le Grand, P., Janković, I., Strack, O.D.L., 2008. Analytic1137

formulation of Cauchy integrals for boundaries with curvilinear geome-1138

57

try. Proceedings of the Royal Society of London, Series A, Mathematical,1139

Physical and Engineering Sciences 464, 223–248.1140

Steward, D.R., Yang, X., Chacon, S., 2009. Groundwater response to chang-1141

ing water-use practices in sloping aquifers using convolution of transient1142

response functions. Water Resources Research 45, W02412:1–13.1143

Tarboton, D.G., Horsburgh, J.S., Maidment, D.R., Whiteaker, T., Zaslavsky,1144

I., Piasecki, M., Goodall, J., Valentine, D., Whitenack, T., 2009. Develop-1145

ment of a community hydrologic information system, pp. 988–994.1146

Vretanos, P.A., 2010. OpenGIS Web Feature Service 2.0 Interface Standard1147

- OGC 09-025r1 and ISO/DIS 19142. Open Geospatial Consortium Inc. .1148

Williams, J.R., 1995. The epic model. Computer Models of Watershed1149

Hydrology , Chapter 25, 909–1000.1150

Zaslavsky, I., Valentine, D., Whiteaker, T., 2007. CUAHSI WaterML, OGC1151

07-041r1. Open Geospatial Consortium Inc. .1152

58

