An Evaluation of the MOOD Set of Object-Oriented Software Metrics

Harrison, Counsell and Nithi
IEEE Trans on Soft Eng
June 1998

Coupling Factor

\[CF = \frac{\sum_{i=1}^{TC} \sum_{j=1}^{TC} is_client(c_i, c_j)}{TC^2 - TC} \]

Model for CF?

- What would be a good abstraction?
- Is there a well-understood Empirical Relationship?
- Scale Type?

Polymorphism Factor

Let \(M_o(C_i) \) be the number of overriding methods in class \(i \).
Let \(M_n(C_i) \) be the number of new methods in class \(i \).

Let \(DC(C_i) \) be the number of descendants of class \(i \).

\[PF = \frac{\sum_{i=1}^{TC} M_o(C_i)}{\sum_{i=1}^{TC} [M_n(C_i) \times DC(C_i) \times DC(C_i)]} \]

Model for PF?

- What would be a good abstraction?
- Is there a well-understood Empirical Relationship?
- Scale Type?

Criteria for Valid Metrics

- 1. Must allow different entities to be distinguished
- 2. Must obey representation condition
- 3. Each unit of attribute contributing to a valid metric is equivalent
- 4. Different entities can have the same attribute value
types of measurement
- direct
 - does not depend on other measures
- indirect
 - involves one or more other measures
 - e.g. density

Criteria for Indirect Metrics
- 1. Explicitly defined model
- 2. Model must be dimensionally consistent
- 3. No unexpected discontinuities
- 4. Units and scale types must be correct

Encapsulation
- MHF - Method Hiding Factor
- AHF - Attribute Hiding Factor
- Proposed as “measures of encapsulation”
- Earlier as measures of “the use of information hiding concept”

Terms
- Data encapsulation - “power of the a language to hide implementation detail …, the separation of interface from implementation, the use of opaque types”
- Information Hiding - “the visibility of methods and/or attributes to other code”

Question
- Why do the authors have the encapsulation vs information hiding vs visibility discussion?

Visibility - review
- $\text{Is_visible}(M,C)$
 - 1 iff class C may call method M and M is in another class
 - 0 otherwise
- $V(M) = \text{sum of Is_visible for method M over all classes divided by number of other classes}$
 - percentage of other classes that can call this method
MHF definition

- Summation over all methods in all classes of 1 minus the V(M) divided by the total number of methods
- Our formula from the abstraction?

Theoretical Validation

- According to the authors, is the MHF measure theoretically validated?
- Would I agree? Why or why not?

Validation

- What about the other metrics?