TTYP – C++ revisited 1

Which of the following statements are reasonable after the following statement: `char* fred = new char[5];`

- a. `fred = bill;`
- b. `strcpy(fred, "store");`
- c. `strcpy("store",fred);`
- d. `fred = "store";`

TTYP – C++ revisited 2

Which statements are reasonable immediately after the following statement: `char* max;`

- a. `max = "fred";`
- b. `max = new char[10];`
- c. `max = 0;`

Scenarios, Use Cases, Interactions

- The lab this week will cover creating use case diagrams and interaction diagrams in Rational Rose.

Use Case Diagram

- Draw important actors
- Add each action

Draw Interaction Diagrams

- Vertical lines for the classes
- Use scenario to put in function calls
TTYP – interaction diagram

- Draw a interaction diagram for checking out a book

Software Development

Software Crisis, Software Quality and the Software Life Cycle

Pressman pp 1-52

Software Crisis

- Software is delivered over-budget, late, and not correct
 - software complexity
 - programmer productivity
- DeMarco’s (IEEE Software Apr 94)
 - only too costly because they would like to pay less
 - only late because they want it sooner

Future of Software

- increasing complexity
- increasing criticality
- trends
 - more formalisms
 - object-oriented
 - Reuse, COTS, and components
 - software measurement
 - emphasis on quality

Quality - the ultimate goal

Software that does what it is suppose to or
I will know it when I see it

How to achieve quality

- Top-down
 - through software life cycle
 - through quality improvement
 - see Dilbert
- Bottom-up
 - Personal Software Process
Software Life Cycle (SLC)

formalizing the process of software development
Pr:22-53

Waterfall Model

Waterfall

Royce - 1970
first realization that there was a standard sequence of tasks
useful as a management tool
 – milestones
maybe too restrictive

Software vs Houses

Requirements
 – Requirements
 – Design
 – Implementation
 – Maintenance

Schematic
 – Blueprints
 – Building House
 – Home Repairs

Design

Requirements
 – Phases
 – Preliminary Analysis
 – Market Analysis
 – Requirements Specification

Documents
 – Statement of Work (SOW)
 – Requirement Specification (SRS)
 » Data Flow Diagram
 » Data Specification
 – User Manual, Test Plans, SQA Plans

Phases
 – Architectural Design
 – Detailed Design

Documents
 – Hierarchy Diagram
 – Module Specification
 – PDL
Implementation

- Phases
 - coding
 - unit testing
 - integration
 - acceptance
 - delivery

- Documents
 - code
 - test reports
 - final user manual

Maintenance

- Tasks
 - error correction
 - enhancement
 - version control
 - regression testing
 - version release

- Documents
 - error report
 - test reports
 - revised documentation

Waterfall Alternatives

- Rapid Prototyping
- Spiral Model
- Incremental Development
- RUDE

Rapid Prototyping

- Build a throw-away version
 - test concepts
 - test requirements
 - not complete functionality
- Saves developing wrong product
- Saves developing unnecessary features

Spiral Model

- Boehm (IEEE Computer May88)
- Revisit the basic tasks of
 - determine objectives
 - evaluate alternatives
 - develop
 - plan next phase
- uses prototypes

Incremental

- Parnas (IEEE TOSE Mar79)
- Design minimal subset
- Design minimal increments
- Always able to deliver something useful
RUDE - the AI approach

- Run
- Understand
- Debug
- Enhance