Architecture Design
For Hotel Reservation System (HRS)

Version 1.2
Submitted in partial fulfillment of the requirements of the degree of MSE

Cem Oguzhan

CIS 895 – MSE Project

Kansas State University

 Table of Contents
31.
Introduction

32.
Hotel Reservation System

33.
Architecture of the HRS

43.1.
Presentation-Tier

43.2.
Middle-Tier

53.2.1.
Class Descriptions

53.2.1.1.
User

63.2.1.2.
Customer

63.2.1.3.
Travel Agent

73.2.1.4.
Administrator

73.2.1.5.
Mail

73.2.1.6.
Hotel Chain

83.2.1.7.
Hotel

83.2.1.8.
Room

93.2.1.9.
Reservation

93.2.2.
Error Handling in Classes

93.2.3.
Sequence Diagrams

103.2.3.1.
Login

113.2.3.2.
Make Reservation

123.2.3.3.
Cancel Reservation

133.2.3.4.
Request Account

133.2.3.5.
Generate Report

143.2.3.6.
Add Hotel---Administrator

153.2.3.7.
Update Hotel Information---Administrator

153.3.
Data-tier (Database)

163.4.
Security

1. Introduction
The purpose of this document is to provide an architectural design of the Hotel Reservation System (HRS). The design will show the presentation tier, the middle tier, which is class diagrams and sequence diagrams, and the data tier.
2. Hotel Reservation System
The hotel reservation system will provide service to on-line customers, travel agents, and an administrator. On-line customers and travel agents can make searches, reservations and cancel an existing reservation on the hotel reservation’s web site. Administrator can update the hotel and the room information. Also, the administrator can approve/disapprove a new travel agent’s account application and generate a monthly occupancy rate report for each hotel.
3. Architecture of the HRS

The architecture of the HRS is based on a 3-tier architecture. There are three logical tiers: the presentation tier, the middle tier, and the data tier. Consideration of choosing a 3-tier architecture for the HRS as follows:

· Separate Business Logic from Presentation

· Reusability of business logic in the future
· Shorter test phase, because the server-components have already been tested

· Increase reliability , because the server-components have already been used and tested

· Reduce maintenance cost
· Improve security, because the client doesn’t have direct access to the database

The diagram below shows a 3-tier architecture.

[image: image1]
3.1.
Presentation-Tier

The presentation-tier for the Hotel Reservation System is ASP.NET Web Forms with User Controls. The Visual Studio .NET IDE will be used to create ASP.NET Web Forms and therefore uses code behind code, where the code for each ASPX page is encapsulated into a separate file. The table below shows ASP.NET Web Forms of the Hotel Reservation System.
	ASP.NET WEB FORMS
	Purpose

	AddHotel.aspx
	The web page for adding a new hotel into the database

	AddRoom.aspx
	The web page for adding new rooms into the database

	Admin.aspx
	The web page for administrator to login

	ApproveTravelAgent.aspx
	The web page for approving/disapproving a travel agent’s account request

	AvailableRoom.aspx
	The web page shows available rooms

	CancelReservation.aspx
	The web page for canceling a reservation

	ConfirmAddHotel.aspx
	The web page for confirmation of adding a new hotel

	ConfirmAddRoom.aspx
	The web page for confirmation of adding a new room

	ConfirmCancelReservation.aspx
	The web page for confirmation of canceling the reservation

	ConfirmUpdateHotel.aspx
	The web page for confirmation of updating the hotel properties

	ConfirmUpdateRoom.aspx
	The web page for confirmation of updating the room properties

	ConfirmReservation.aspx
	The web page for confirmation of the reservation

	CreateNewAccount.aspx
	The web page for creating a new customer account

	EditAccount.aspx
	The web page for updating the customer properties

	Error.aspx
	The web page for displaying error messages

	FindHotel.aspx
	The web page for searching hotels

	HotelResult.aspx
	The webpage for displaying search result

	MakeReservation.aspx
	The web page for making a reservation

	Menu.ascx
	The user control for the menu

	Report.aspx
	The web page for generating a report

	RequestAccount.aspx
	The web page for request an account by a travel agent

	RoomPreferences.aspx
	The web page allows to user choose their room preferences

	SignIn.aspx
	The web page for login to secure web sites

	SignOut.aspx
	The web page for confirmation for logout

	UpdateHotel.aspx
	The web page for updating an existing hotel information

	UpdateRoom.aspx
	The web page for updating an existing room information

3.2. Middle-Tier
The class diagram below captures middle-tier, business specific layer, of the Hotel Reservation System. Business specific layer of the Hotel Reservation System consist of nine classes, User, Customer, Travel Agent, Administrator, Mail, Hotel Chain, Hotel, Room and Reservation.

[image: image2.emf]Customer

firstName : String

lastName : String

cardType : String

cardNumber : Integer

experationDate : Date

createAccount()

updateAccount()

Mail

sendMail(e_address : String) : Boolean

User

userName : String

email : String

password : String

phone : String

address : String

city : String

state : String

zip : String

verifyLogin()

logout()

getUser()

TravelAgent

companyName : String

status : String

requestAccount()

generateReport()

Room

roomNumber : Integer

price : Double

bedType : String

smoking : String

roomLock : Date

getRoomRate()

getRoomAvl()

newRoom()

updateRoom()

Reservation

reservationNumber : Integer

checkIn : Date

checkOut : Date

resvDate : Date

price : Double

totalCost : Double

makeReservation()

getReservation()

cancelReservation()

calculateTotalCost()

1 0..*

+allocation

1

+theReservation

0..*

0..*

1

+theReservation

0..*

+theUser

1

Administrator

userName : String

password : String

verifyLogin()

logout()

approveAccount()

disApproveAccount()

generateReport()

0..*

1

+requestAccount

0..*

+approveAccount

1

1

0..*

Hotel

hotelID : String

name : String

address : String

city : String

state : String

phone : String

rating : Integer

findHotel()

newHotel()

updateHotel()

1..*

1

+theRoom

1..*

+theHotel

1

0..*

1

+theReservation

0..*

+theHotel

1

0..*

1

+theHotel

0..*

+theAdmin

1

Hotel Chain

1..*

1

1..*

1

1

0..*

+theHotel Chain

+theHotel

3.2.1. Class Descriptions
3.2.1.1. User
[image: image3.emf]User

userName : String

email : String

password : String

phone : String

address : String

city : String

state : String

zip : String

verifyLogin(userName : String, password : String) : Boolean

logout()

getUser(userName : String) : User

This class will handle user actions. User class is the super class of Customer and Travel Agent. The User has private methods to verify login, logout, and get user information. The verify login method is called, when the user presses the sign in button on the SignIn.aspx web form. It returns true if the login is successful, false if it is not. The logout method is called when the user clicks the logout link on the menu of the HRS system. The logout link will be only available on the menu, if the user is already signed in. The get user method is called when the user information needs to be display, such as editing the user account information. It returns User.
3.2.1.2. Customer
[image: image4.emf]Customer

firstName : String

lastName : String

cardType : String

cardNumber : Integer

experationDate : Date

createAccount()

updateAccount()

[image: image5.emf]Operation Signature:

createAccount(userName : String, email : String, password : String, firstName : String, lastName : String, cardType : String, cardNumber :

Integer, experationDate : Date, phone : String, address : String, city : String, state : String, zip : String) : Boolean

updateAccount(userName : String, email : String, password : String, firstName : String, lastName : String, cardType : String, cardNumber :

Integer, experationDate : Date, phone : String, address : String, city : String, state : String, zip : String) : Boolean

This class will handle customer actions. It inherits User class responsibilities. The Customer has public methods to create an account and update account information. The create account method is called when the customer presses the create account button on the CreateNewAccount.aspx web form. If the account is successfully created, the method returns true. Otherwise, it returns false. The update account method is called when the customer clicks the update account button on the EditAccount.aspx web form. The method returns true if the account is successfully updated, false if it is not.
3.2.1.3. Travel Agent
[image: image6.emf]TravelAgent

companyName : String

status : String

requestAccount()

generateReport()

[image: image7.emf]Operation Signature:

requestAccount(userName : String, email : String, password : String, companyName : String, status : String, phone : String,

address : String, city : String, state : String, zip : String) :Boolean

generateReport(startingDate : Date, endingDate : Date) : Boolean

This class will handle travel agent actions. It inherits User class responsibilities. It has public methods to request account and generate report. The request account method is called when the travel agent presses the request account button on RequestAccount.aspx web form. If the request account is successful, it sends mail to the travel agent’s e-mail address. The generate report method is called when the travel agent is presses the generate report button on the Report.aspx web form. It returns true if the report is successfully generated, false if it is not.
3.2.1.4. Administrator

[image: image8.emf]Administrator

userName : String

password : String

verifyLogin(userName : String, password : String) : Boolean

logout()

approveAccount()

disApproveAccount()

generateReport(hotelID : String, startingDate : Date, endingDate : Date)

This class will handle administrator actions. The Administrator has private methods to verify login, logout, approve account, disapprove account and generate report. The verify login method is called, when the administrator presses the sign in button on the Admin.aspx web form. It returns true if the login is successful, false if it is not. The logout method is called when the administrator clicks the logout link on the menu of the HRS system. The logout link will be only available on the menu, if the administrator is signed in. The approve account method is called when the administrator presses approve account button on the ApproveTravelAgent.aspx web form. It sends an e-mail to the travel agent applicant’s address that the agent’s account is approved. The disapprove account method is called when the administrator clicks disapprove account button on the ApproveTravelAgent.aspx web form. It sends an e-mail to the travel agent applicant’s address that the agent’s account is disapproved. The generate report method is called when the administrator is presses the generate report button on the Report.aspx web form. It creates an occupancy rate report for a hotel.
3.2.1.5. Mail
[image: image9.emf]Mail

sendMail(e_address : String) : Boolean

This class represents Mail. It has a private method to send an e-mail. It uses a virtual SMTP server. The Travel Agent and the Administrator class use the Mail class to send an e-mail.

3.2.1.6. Hotel Chain

[image: image10.emf]Hotel Chain

This class is a container for the Hotel.
3.2.1.7. Hotel
[image: image11.emf]Hotel

hotelID : String

name : String

address : String

city : String

state : String

phone : String

rating : Integer

findHotel(city : String, state : String) : DataSet

newHotel(hotelID : String, name : String, address : String, city : String, state : String, phone : String, rating : Integer) : Boolean

updateHotel(hotelID : String, name : String, address : String, city : String, state : String, phone : String, rating : Integer) : Boolean

This class represents Hotel. The Hotel has private methods for finding a hotel, adding a new hotel, and updating existing hotel information. The find method is called when the user presses the find hotel button on the FindHotel.aspx web form. It returns hotel(s) as a data set. The new hotel method is called when the administrator presses the button on the AddHotel.aspx web form. It returns true if adding the new hotel is saved into the database successfully. Otherwise, it returns false. The update hotel method is called when the administrator clicks on the UpdateHotel.aspx web form. It returns true if the updating information is saved into the database, false if it is not.
3.2.1.8. Room

[image: image12.emf]Room

roomNumber : Integer

price : Double

bedType : String

smoking : String

roomLock : Date

getRoomRate(r : Room) : Double

getRoomAvl(hotelID : String, bedType : String, smoking : String, checkIn : Date, checkOut : Date) : Room

newRoom(hotelID : String, roomNumber : Integer, price : Double, bedType : String, smoking : String) : Boolean

updateRoom(roomNumber : Integer, price : Double, bedType : String, smoking : String) : Boolean

This class represents a Room. The Room has private methods to get a room price, get available rooms in specific date ranges, adding a new room and updating a room property. The get room rate method is called when the room rate needs to be displayed. The get available room method is called when the user presses the check availability button on the RoomPreferences.aspx web form. It returns room(s).

The new room method is called when the administrator presses the button on the AddRoom.aspx web form. It returns true if the new room is saved into the database successfully. Otherwise, it returns false. The update room method is called when the administrator clicks on the UpdateRoom.aspx web form. It returns true if updating information is saved into the database, false if it is not.

3.2.1.9. Reservation

[image: image13.emf]Reservation

reservationNumber : Integer

checkIn : Date

checkOut : Date

resvDate : Date

price : Double

totalCost : Double

makeReservation(r : Reservation) : Boolean

getReservation(reservationNumber : Integer) : Reservation

cancelReservation(reservationNumber : Integer) : Boolean

calculateTotalCost(r : Reservation) : Double

This class is responsible for reservations. The Reservation has private methods to make a reservation, get the existing reservation, cancel a reservation and calculate total cost of the reservation. The make reservation method is called when the user presses confirm reservation button on the ConfirmReservation.aspx web form. It returns true if the reservation is saved into the database successfully, false if it is not. The get reservation method is called when the user presses the get reservation button on the CancelReservation.aspx web form. It returns a reservation. The cancel reservation method is called when the user clicks the cancel button on the CancelReservation.aspx web form. It returns true if the reservation is deleted successfully from the database. Otherwise, it returns false. The calculating total cost method is called when the user is redirected to the ConfirmReservation.aspx web form. It returns double.
3.2.2. Error Handling in Classes
In the classes, all thrown exceptions are being caught. If an error occurs, the user is directed to an error page (Error.aspx). The full stack trace and requested URL that generated the error is written to the Application Event Log on Internet Information Services (IIS) server for the system administration. The user will not see unhanded exception error in the browser.
3.2.3. Sequence Diagrams
The following sequence diagrams show some of the core functions of the Hotel Reservation System, which will perform.
3.2.3.1. Login
[image: image14.emf] : User

 : SignIn.aspx

 : User

 : EditAccount.aspx

1: user provides requested information

3: verifyLogin(userName:String,password:String)

Sequence diagram shows that user successfully login for editing

his/her account

2: new

5: [IsVerify]

4: Verify

The user needs to log in to the system for accessing secure sites. The user will enter user name and password then User class will validate those information. If the user name and password are correct, the system will direct user to an appropriate web page. Otherwise, the system will prompt the user the check the user name and password. The above sequence diagram shows successfully login for editing a user’s account.
3.2.3.2. Make Reservation
[image: image15.emf] : User

 : FindHotel.aspx

 : Reservation

 : Hotel

 : HotelResult.aspx

 : Room

 : RoomPreferences.aspx :ConfirmReservation.aspx : Hotel Chain

7: selectHotel()

This sequence diagram shows successfull reservation and user already logged in.

Operation Signature:

getRoomAvl(hotelID : String, bedType : String, smoking : String, checkIn : Date, checkOut : Date) : Room

1: provide requested information

2: findHotel(city:String, state:String)

4: findHotel(city:String, state:String)

3: new

5: verify

6: [IsVerify]

8: room preferences

9: select room preferences

10: new

11: getRoomAvl()

13: reserve

14: [IsVerify] new

15: makeReservation(r:Reservation)

12: verify

17: [IsVerify] confirmation

16: Verify

The sequence diagram shows successful reservation and user is already login. The user will enter required information such as city, state, check-in date, check-out date and number of room over the FindHotel.aspx web page. When the user clicks “Find Hotel” button, the findHotel message will be passes to Hotel Chain. The Hotel Chain then sends a “new” and findHotel() message to a Hotel. If there is a hotel in particular city and state, the hotel(s) information’s will be displayed as a web page, which is HotelResult.aspx. The user will select a hotel, which wants to make a reservation, and then RoomPreferences.aspx web page will be displayed. The user will select room preferences over the RoomPreferences.aspx web page. The RoomPreferences.aspx sends a “new” and getRoomAvl() message to a Room. The Room class attempts to check whether there is an available room between check in date and check out date in the selected hotel. The available room(s) will be displayed as a web page, which is the RoomPreferences.aspx. When the user selects room(s) for reservation, the makeReservation() message passes to a Reservation. The related reservation data will be saved into the database and the reservation confirmation web page will be displayed.
3.2.3.3. Cancel Reservation
[image: image16.emf] : User

 : CancelReservation.aspx

 : Reservation

 : ConfirmCancelReservation.aspx

1: provides requested information

3: getReservation(reservationNumber:Integer)

4: cancel()

5: cancelReservation(reservationNumber:Integer)

2: new

6: verify

7: [IsVerify]

The sequence diagram shows successful canceling of a reservation and the user is already login. The user will enter the reservation number over the CancelReservation.aspx web page then he/she will click to the “Find” button. The CancelReservation.aspx sends a new messeage to a Reservation, specifies that the instance is created during execution of the enclosing interaction. CancelReservation.aspx sends a getReservation() message to a Reservation then the valid reservation information will be displayed for canceling. The user will click to the “Cancel” button. CancelReservation.aspx sends cancelReservation() message to a Reservation. If the reservation is canceled successfully, the system will direct the user to the ConfirmCancelReservation.aspx web page. Otherwise, the system will prompt an appropriate error message to the user.
3.2.3.4. Request Account
[image: image17.emf] : Agent

 : RequestAccount.aspx

 : TravelAgent

 : Mail

1: provide requested information

2: new

3: requestAccount()

The sequence diagram shows that the travel agent successfully applies to an account.

Operation Signature:

requestAccount(userName : String, email : String, password : String, companyName : String, status : String, phone : String, address : String,

city : String, state : String, zip : String) : Boolean

4: verify

5: [verify] sendMail(e_address:String)

The sequence diagram shows that a travel agent requests an account to be a member to the Hotel Reservation System. The travel agent will provide requested information over the RequestAccount.aspx web page. The RequestAccount.aspx sends “new” and requestAccount() message to a TravelAgent. The information is provided by the travel agent will be saved into the database. The confirmation e-mail will be sent that travel agent successfully applies an account for the HRS system. The administrator will decide to approve/disapprove the application.

3.2.3.5. Generate Report
[image: image18.emf] : Agent

 : Report.aspx : TravelAgent

1: provides requested information

2: generateReport(startingDate:Date, endingDate:Date)

3: Report

The sequence diagram shows successfully generate a sales report for the travel agent and the agent is already logged in. The travel agent will select beginning and ending date of the report then click the “generate report” button. The Report.aspx sends a generateReport() message to a TravelAgent. The report will be displayed as a web page.

3.2.3.6. Add Hotel---Administrator
[image: image19.emf] : Admin

 : AddHotel.aspx

 : Hotel

 : ConfirmAddHotel.aspx

1: provides requested information

3: newHotel()

2: new

The sequence diagram shows successfuly adding a hotel. The admin is already login.

Operation Signuture:

newHotel(hotelID : String, name : String, address : String, city : String, state : String, phone : String, rating : Integer) : Boolean

4: verify

5: [IsVerify]

The sequence diagram shows successfully adding a new hotel and the administrator is already logged in. The administrator will provide required information over the AddHotel.aspx web page. When the administrator clicks the “Add Hotel” button on the AddHotel.aspx web form, The AddHotel.aspx sends a “new” and newHotel() message to a Hotel. If the information is successfully saved into the database, the ConfirmAddHotel.aspx web page will be displayed for confirmation purpose.
3.2.3.7. Update Hotel Information---Administrator
[image: image20.emf] : Admin

 : UpdateHotel.aspx

 : Hotel

 : ConfirmUpdateHotel.aspx

1: provide required information

The admin is already login. The sequence diagram shows successfuly update a hotel by the administrator.

Operation Signuture:

updateHotel(hotelID : String, name : String, address : String, city : String, state : String, phone : String, rating : Integer) : Boolean

2: new

3: updateHotel()

4: verify

5: [verify]success

The sequence diagram shows successfully updating the hotel information by the administrator. The administrator is already logged in.
3.3. Data-tier (Database)
The database has the following structure of tables:

	Table Name
	Purpose

	Customer
	Represents customer information.

	Agent
	Represents travel agent information.

	Administrator
	Represents administrator information.

	Hotel
	Represents hotel information

	Room
	Represents room information.

	Reservation
	Represents reservation information made by the user.

The complete physical database schema for the Hotel Reservation System is illustrated in database diagram below.

[image: image21.png]Room
|Roomhumber
price
Type
Smoking
RoomLock.
Hotelin

Hotel

| HotellD
| |Hoteluame
Street
iy
state
70
Phane.
Starkate

Reservation
@|Reservationtiumber

Roamhumber
Usertiame.
Agentusertiame
Hotelln
Checkin
Checkout
ResvDate
RoanPrice
TotaiCost

Customer
Lasthame.
Frstiiame
Street
iy
state
70
Phane.

7| Usertiame
Passcode
el
CardType
Cardumber
Experstion

Administrator.

7| Usertiame
passcode

Agent
oertiane
acdress
ciy
stete
2
Phane

] usertame:
passcode
emai
status

3.4. Security

The Hotel Reservation System uses ASP.NET Forms Authentication to allow users to access secure web sites such as editing a customer account, making a reservation and canceling a reservation.

Interface

Business Logic

Data Management

Client

Server

Presentation Tier Tier

Middle Tier

Data Tier

