
TITLE

 INSIGHT: An Eclipse Plug-in Example
 By Charlie Thornton

CONCEPTS

 Eclipse Plug-in (View) Development
 Working with the Graphical Editor Framework (GEF)
 Working with the Eclipse JDT Debug Interface

SUMMARY

 This document and supporting code is an introduction to GEF plug-in
development. We construct a view plug-in for the eclipse IDE that displays information
from the built-in java debugging environment. After completing this tutorial, developers
should be able to easily expand on their GEF understanding to create more complicated
views and editors. Also, the debugging interface in this example targets java, but it can
be extended to support other languages in a straightforward manner.

INTRODUCTION

 This is a guide though the included source code. It does not contain descriptions
of any of the relevent frameworks or much motivating commentary. Suffice it to say, the
debug framework has a steep learning curve and GEF adds considerably to the grade.
The following sections will provide a description of the plugin, and guides to each of the
packages within the source of the plug-in. The package structure (parts, figures, model)
was designed to match other examples provided with GEF.

 Before continuing, make sure you have created a project for the plug-in source
code and that it will compile. If you have not installed the version of GEF suitable for
your version of eclipse do so now. Plug-in projects have a huge number of dependencies
(on other eclipse plug-ins). In eclipse 3.0 they can resolved by editing the package
properties and adding the library "Required Plug-ins" to the java build path, but you may
need to resolve the dependencies differently based on your version of eclipse.

DESCRIPTION

 We want a graphical representation of the java debugging environment
(org.eclipse.jdt.debug) included with eclipse. Java is simply one of the many
implementations of the debugging interface (org.eclipse.debug) in the IDE. We are
specifying that our visualization will be java-specific because we want to get at some
extra java-specific constructs that aren't supported by the debugging interface. Details
about dependencies are given in the section of this document discussion the model
package (cis690.insight.debug).

 The root level elements in our visualization will be threads, and we should be able
to expand a thread's stack frame to see what objects it links to. We will also use an icon
to differentiate between non-thread objects and threads. If we attempt to expand an
object already referenced in the view (i.e. by another thread), then the view will be smart
enough simply to draw an additional link. Fundamental data types and wrapper classes
should be displayed in-line. We will also include the ability to "shade" and "unshade"
our objects to help reduce visual clutter. Refer to the accompanying screen shot of this
plug-in in action for an alternate description.

TOP LEVEL
[cis690.insight]

 The plug-in entry point is contained in the View class located in this package.
View extends GEF's ViewPart and is the component that is plugged in to the eclipse
workbench. The eciting code lies in the "createPartControl" method. The reason it is
exciting is because ordering matters and you have to do some things that you might try to
skip. First and foremost, none of the fancy GEF automatic behavior will come to life
unless the edit domain has been set. Passing in a DefaultEditDomain as shown is good
enough, but it must be done. Otherwise the edit domain is null and none of your policies
will be activated.

 The remaining code in createPartControl primarily establishes how the view will
be populated. The factory and contents are the keys. After setting the contents, the edit
part will create more "child" edit parts based on what children the contents (or model)
reports. This process is fully automated and will work properly if your model properly
reports children and your factory can build edit parts for those model objects.

 The other two classes at this level are convenience classes to store static
instantiated color and font objects (imagine java's Color.blue).

DEBUG
[cis690.insight.debug)

 This package contains the data model for our view. Conveniently, eclipse
manages most of the debugging data, so this package's job is simply to provide access to
the information inside eclipse's debugging engine. Because of the GEFs edit part
structure, each edit part must contain some model element. This model is what is used to
construct the part. The two primary model classes used in this plug-in are DebugModel
and DebugObject.

 DebugModel is the top-level model element. It's corresponding model element
(cis690.insight.parts.DebugModelEditPart) occupies the entire visible area of our view.
The model itself will not actually be a rendered element, but its children (the
DebugObjects) will be. We now find ourselves at the most confusing descision in
developing this plugin.

 The eclipse debug model has a natural tree-like interface. Each stack frame refers
to objects which refer to other objects and so on. If you are familiar with the edit part
api, you know that edit parts are created in a tree-like fashion as well (i.e.
AbstractGraphicalEditPart's "getModelChildren" method). The first pass would then be
to have each debug object parent its child debug objects as needed. This would be an
elegant solution. Unfortunately, during the development of this plug-in I was never able
to make this approach work. Any child part was created within (and limited to) the
bounding box of its parent’s edit part. Because of this "box crowding" I switched to the
current model structure in which the DebugModel simply manages all of the
DebugObjects as its children. Thus they are all contained within the bounding box of the
DebugModelEditParts FreeformLayer.

 This package also includes interfaces for the two model objects (IDebugModel
and IDebugObject). We refer to the objects by interface as often as possible in other
packages to simplify refactoring. There is a class called DOVector which ensures type
safety and allows .contains method calls on this type of vector to return true if two
objects refer to the same underlying debug object (rather than reference equality). The
interface to the java debugging layer also lives here -- DebugUtil. The original
motivation for the debug utility was to transform all of the exception throwing debugger
interfacing to safe methods. Eventually it became the single window into the java-
specific side of the debugging framework.

 Almost all deviation from the standard debugging interface takes place in the
model class "cis690.insight.debug.DebugUtil". The exception is a use of the class
org.eclipse.jdt.debug.core.IJavaThread in the DebugObject and DebugModel to contain
data about a thread's name and variables (which are fetched via the DebugUtil). Aside
from this, efforts to convert the debugging interface could be localized to the DebugUtil
class.

VIEW PARTS
[cis690.insight.parts]

 The "parts" package houses the GEF "ViewPart" related elements. It contains a
class called InsightPartFactory which is used to manufacture edit parts based on model
objects (used in the top-level section). Also, the EnclosingLayoutPolicy can be found
here. This policy allows proper dragging (and disallows resizing) of the edit parts
displayed in the view. Though it appears to support "undo", I was never able to get it
working -- perhaps this would be a nice excercise.

 The most mysterious class in the parts package is "AsyncRefresh". It turns out, if
you try to call an edit part's "refresh" method (say to update some text) from any thread
other than the UI thread (equivalent to the AWT thread in java GUI development) eclipse
will throw an exception and your plug-in will stop working. This is inconvenient if you
would like to update following a notification from the debugger thread. AsynchRefresh's

"refresh" method allows you to refresh the UI be remembering the UI thread and forcing
it to refresh. It is equivalent to the repaint posting behavior found in java applications.

 The DebugModelEditPart class found here wraps the DebugModel object (its
model), and provides GEF with suitable hooks to manipulate its connections. The
DebugObjectEditPart class behaves similarly. There is a considerable amount of code
here, but the only traps lie in implementing by accident or failing to implement methods
that the EditParts use to turn on all of their extra functionality. Study the API carefully
and think twice before naming a method in these classes. GraphicalEditParts have many
methods and they all turn some bell or whistle on or off -- be wary. Also note that the
edit parts make use of the AsyncRefresh class, this allows them to localize the strange
refresh handling by intentionally reimplementing the refresh class to reroute calls to the
UI thread.

FIGURES
[cis690.insight.figures]

 The figures package creates the visual representations of the edit parts. Where the
EditParts were the controllers, the figures provide the view in the MVC system. The five
figures contained in this implementation are all the pieces of a single big object figure or
"ObjFig". In addition to managing the rendering and updating of the model data, the
ObjFig class also listens for the shade/unshade action. The state variable monitoring this
behavior is actually in the DebugObject class so there are a number of methods in place
to facilitate this exchange.

 The next level down in the hierarchy is the VarFig class. These figures are the
horizontal bars designed to display information about particular variables visible within
an object. Variable expansion (the method by which our figures multiply) is handled by
this figure in conjunction with the appropriate model objects. Special rendering of
descriptive strings is delegated to the DebugUtil object mentioned in the model section
above.

 The idea that any figure can be properly laid out with a combination of the border
and toolbar layouts seemed to guide the GEF at the time this plug-in was made. This
restriction created some awkwardness in the component layouts, but luckily these figures
are simple enough to comply. Fortunately, when working with figures, the full power of
the SWT layout system is available and they have a number of more convenient models
to choose from.

FINALY

 With the package descriptions in hand it should be possible to browse and alter
the original source code without much mysticism. In particular the DebugUtil object
could be swapped out or recoded to work with another language supported by the eclipse
debugging framework. This document cannot stand in isolation. You must read the
introductory articles on the eclipse plug-in framework, SWT, and GEF in order for the

source listings in this plug-in to make any sense. Eclipse plug-in development has a very
steep learning curve (and it doesn't level off very fast, either!), but with a little patience it
will are start to make sense.

