Course Outline

- 1. Introduction to the course and sample crawling task
- 2. Classification, hands on with Weka
- 3. K-means, Topic modeling, demo with Mallet
- 4. PageRank, Gephi demo
- 5. Information extraction, OpenCalais demo

Each lecture: concepts + specific tasks in CiteSeer + demo/exercise

Course homepage

http://www.cse.unt.edu/~ccaragea/russir14/schedule.html

Classification Problems

- Email filtering: spam / non spam
- Email foldering/tagging: Work, Friends, Family, Hobby
- Research articles by topics: Machine Learning, Data Mining, Algorithms
- Document by type: research article, thesis, slides, CV
- Tumor: malignant / benign
- Medical diagnosis: Not ill, Cold, Flu

Assign each document to a label from <u>a known set of labels</u> We have a labeled dataset (*supervised* learning)

Classification algorithms

- Tree-based models: automatically generate conjunctive rules
- Generative models:
 - Estimate probability distributions for data and apply Bayes' theorem
 - 1. Assume a generative distribution for data
 - 2. Estimate parameters for class priors and data class distributions from the training data
 - 3. Use posterior probabilities for prediction

Estimate parameters of the distribution

- Very specific to the form of the assumed distribution
- Maximum likelihood estimate

$$p(\vartheta|X) = \frac{p(X|\vartheta) \cdot p(\vartheta)}{p(X)}, \qquad \text{posterior} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}.$$

$$L(\vartheta|X) \triangleq p(X|\vartheta) = \bigcap_{x \in X} \{X = x|\vartheta\} = \prod_{x \in X} p(x|\vartheta),$$

$$\hat{\vartheta}_{\mathrm{ML}} = \operatorname*{argmax}_{\vartheta} \, \mathcal{L}(\vartheta | X) = \operatorname*{argmax}_{\vartheta} \, \sum_{x \in X} \log p(x | \vartheta). \qquad \frac{\partial \mathcal{L}(\vartheta | X)}{\partial \vartheta_k} \stackrel{!}{=} 0 \quad \forall \vartheta_k \in \vartheta.$$

Example

Bernoulli density function (p: probability of throwing a head, c=0/1)

 $p(C=c|p) = p^c (1-p)^{1-c} \triangleq \operatorname{Bern}(c|p)$

$$\mathcal{L} = \log \prod_{i=1}^{N} p(C = c_i | p) = \sum_{i=1}^{N} \log p(C = c_i | p)$$
$$= n^{(1)} \log p(C = 1 | p) + n^{(0)} \log p(C = 0 | p)$$
$$= n^{(1)} \log p + n^{(0)} \log(1 - p)$$

where $n^{(c)}$ is the number of times a Bernoulli experiment yielded event *c*. Differentiating with respect to (w.r.t.) the parameter *p* yields:

Example (contd.)

$$\frac{\partial \mathcal{L}}{\partial p} = \frac{n^{(1)}}{p} - \frac{n^{(0)}}{1-p} \stackrel{!}{=} 0 \quad \Leftrightarrow \quad \hat{p}_{\rm ML} = \frac{n^{(1)}}{n^{(1)} + n^{(0)}} = \frac{n^{(1)}}{N},$$

which is simply the ratio of heads results to the total number of samples.

•Avoid zero probabilities Fold in priors and prior distributions with hyperparameters MAP estimates, Bayesian estimates

Naive Bayes Multinomial for text

- Assume a generative distribution
 - Each class has a multinomial distribution over terms
- Compute parameters based on training data
 - Calculate P(c_i) terms Calculate P(w_k | c_i) terms Text_i ← single doc containing all docs_i • For each c_i in C do For each word w_k in Vocabulary $docs_i \leftarrow all docs with class = c_i$ $n_k \leftarrow \#$ of occurrences of w_k in $Text_i$ $P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$
 - $P(w_k | c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha | Vocabularv|}$
- Use posteriors for assigning class labels
- **Bag-of-words and conditional independence assumptions**

Discriminative Models

- Don't care for generating the data P(x,c) but instead model conditional directly P(c|x)
 - Maximum Entropy P(c|x) is $f(w_c.x)$
- Usually talk in terms of weight/parameter vectors for features
- Computing parameters based on training data
 - Involves numerical optimization of a loss function on the training data

Questions from yesterday

- Decision trees over unsupervised data
 - D. Karakos, S. Khudanpur, J. Eisner and C. E. Priebe, Unsupervised Classification via Decision Trees: An Information-Theoretic Perspective, in Proceedings of the 2005 IEEE International Conference on Acoustics, Speech and Signal Processing
- Basic/introductory course on ML
 - Several courses on coursera (Andrew Ng's course)

Unsupervised Learning

Supervised learning

Unsupervised learning

- Unsupervised learning: Learning to group objects into categories, without any training labels.
 - Examples: clustering search results into topics

Popular approaches

- Clustering
 - K-means
 - Hierarchical clustering
 - Graph-based clustering
 - Density-based clustering, DBSCAN
- Mixture models
 - Topic modeling
 - EM-based models
- Dimension Reduction
 - Principal Component Analysis
 - Matrix factorization