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Online photo sharing is an increasingly popular activity for Internet users. More and more users are now
constantly sharing their images in various social media, from social networking sites to online communities,
blogs, and content sharing sites. In this article, we present an extensive study exploring privacy and sharing
needs of users’ uploaded images. We develop learning models to estimate adequate privacy settings for newly
uploaded images, based on carefully selected image-specific features. Our study investigates both visual and
textual features of images for privacy classification. We consider both basic image-specific features, commonly
used for image processing, as well as more sophisticated and abstract visual features. Additionally, we include
a visual representation of the sentiment evoked by images. To our knowledge, sentiment has never been
used in the context of image classification for privacy purposes. We identify the smallest set of features,
that by themselves or combined together with others, can perform well in properly predicting the degree of
sensitivity of users’ images. We consider both the case of binary privacy settings (i.e., public, private), as well
as the case of more complex privacy options, characterized by multiple sharing options. Our results show
that with few carefully selected features, one may achieve high accuracy, especially when high-quality tags
are available.
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1. INTRODUCTION

Online photo sharing is an increasingly popular activity for Internet users. More and
more users are now constantly sharing their images in various social media, from social
networking sites to online communities, blogs, and content sharing sites. Sharing takes
place both among previously established groups of known people or social circles (e.g.,
Google+, Flickr, or Picasa) and also increasingly with people outside the user’s social
circles for purposes of social discovery [Blog 2012] to help them identify new peers and
learn about peers’ interests and social surroundings. For example, people on Flickr or
Pinterest can upload their images to find social groups that share the same interests
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[Blog 2012; Zheng et al. 2010]. However, semantically rich images may reveal content-
sensitive information [Ahern et al. 2007; Squicciarini et al. 2011; Zerr et al. 2012].
Consider a photo of a student’s 2014 New Years’ public ceremony, for example. It could
be shared within a Google+ circle or Flickr group, or it could be used to discover 2014
awardees. Here, the image content may not only reveal the users’ location and personal
habits but may unnecessarily expose the image owner’s friends and acquaintances.

Sharing images within online content sharing sites, therefore, may quickly lead to
unwanted disclosure and privacy violations [Bullguard 2014; Ahern et al. 2007; Besmer
and Lipford 2009]. Malicious attackers can take advantage of these unnecessary
leaks to launch context-aware attacks or even impersonation attacks [Higgins 2010],
as demonstrated by a proliferating number of cases of privacy abuse and unwarranted
access.

In particular, privacy of online images is inherently a subjective matter, dependent
on the image owner’s privacy attitude, awareness, and the overall context wherein the
image is to be posted.

In this work, we explore the hypothesis that some generic patterns of private images
can be well identified when a group of online images are taken into consideration,
regardless of their authors’ individual privacy bias and level of awareness.

Toward validating this hypothesis, we carry out an extensive study aiming at ex-
ploring the main privacy and sharing needs of users’ uploaded images. Our goal is
to develop learning models to estimate adequate privacy settings for newly uploaded
images, based on carefully selected image-specific features. We focus on image-specific
features only, rather than broader contextual social network dimensions or personal
information about the image poster or his/her audience. Intuitively, contextual features
may help in addressing our research question but would require much more informa-
tion for every image, which may or may not always be available or even reliable. We
aim to minimize additional personal information that would be needed to infer users’
privacy preferences. To achieve this goal, we focus on two types of image features:
visual-content features and images’ metadata.

Within these feature types, we aim to identify the smallest set of features that, by
themselves or combined together with others, can perform well in properly predicting
the degree of sensitivity of users’ images. Among the features that we use to capture
the visual-content of images, we include both low-level image processing features that
capture colors, patterns, and edge directions, with more sophisticated derived features.
One such derived feature is “sentiment,” representing the sentiment evoked by the
image. Our hypothesis here is that the sentiment evoked by an image may be correlated
with the type of disclosure associated with it. To the best of our knowledge, sentiment
has never been studied in correlation with privacy classification of images.

We develop and contrast various learning models that combine an increasingly large
number of features using both combined and ensemble classification methods. Our
analysis shows some interesting performance variability among all the analyzed fea-
tures, demonstrating that while models for images’ privacy can be well captured using
a large amount of features, only some of them have a significant discriminative power.

To this date, only very few studies have started to address this complex problem. Most
recent work related to online disclosure of personal information has been devoted to
protecting generic textual users’ online personal data, with no emphasis on the unique
privacy challenges associated with image sharing [Liu and Terzi 2010; He et al. 2006].
Further, work on image analysis has not considered issues of privacy but focused on
semantic meaning of images or similarity analysis for retrieval and classification (e.g.,
Chapelle et al. [1999], Sawant et al. [2011], Ng et al. [2007], Datta et al. [2008], and
da Silva Torres and Falcão [2006]). Only some recent work has started to explore simple
classification models of image privacy [Squicciarini et al. 2011; Zerr et al. 2012].
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We specifically identified Scale-Invariant Feature Transformation (SIFT) and TAGS
(image metadata) as the best-performing features in a variety of classification models.
We achieve a prediction accuracy of 90% and a Break Even Point (BEP) of 0.89 using
these features in combination. In the absence of TAGS, our results show that SIFT and
Sentiment-based feature perform the best, with prediction accuracy reaching unto 80%.

Furthermore, we analyze privacy needs of images on a multi-level scale, consistent
with current privacy options offered by most popular Web 2.0 sharing sites and appli-
cations. We adopt a five-level privacy model, where image disclosure can range from
open access to disclosure to the owner only. In addition to the five-privacy levels, our
models also include various degrees of disclosure for each image to model the different
ways an image can be made available online. These degrees of disclosure are View,
Comment, Download. According to this multi-level, multi-class privacy framework, we
build models to estimate adequate privacy settings, using the best combination of fea-
tures obtained in our privacy prediction models for binary classification. In these new
models, we account for the inter-relations between different privacy classes. An exam-
ple for such an inter-relation is the following: An image can be downloadable only if
it can be viewed. To model these inherent inter-relations, we used Chained classifier
[Read et al. 2011] models, where predicted class labels are used to predict new class
labels. Our experiments confirm that these models, executed using a blend of visual
and metadata features, consistently outperformed strong baseline models.

To the best of our knowledge, this is the first and most comprehensive study carried
out to date on large-scale image privacy classification that includes not only simple
privacy classification based on binary labels but also models for more complex, multi-
facet privacy settings.

The rest of the article is organized as follows. We discuss prior research in Section 2.
In Section 3, we elaborate our problem statement, whereas in Section 4 we discuss
different image-based features that we explored. In Section 5, we analyze the patterns
of visual and textual features in public and private images. In Section 6, we introduce
the multi-class model. We finish our analysis in Section 7, where we discuss pointers
to future works and conclude the article.

2. RELATED WORK

A number of recent studies have analyzed sharing patterns and social discovery in
image sharing sites like Flickr [Choudhury et al. 2009; Ames and Naaman 2007; Miller
and Edwards 2007; Zheng et al. 2010]. Among other interesting findings, scholars have
determined that images are often used for self- and social disclosure. In particular,
tags associated with images are used to convey contextual or social information to
those viewing the photo [Sawant 2011; Plangprasopchok and Lerman 2007; Chen et al.
2008; Ames and Naaman 2007; Henne et al. 2013], motivating our hypothesis of using
metadata as one among other features for privacy extraction.

Miller and Edwards [2007] further confirm that people who share their photos main-
tain social bonds through tagging together with online messaging, commenting, and so
on. They also identify two different types of users (normal and power users), indicating
the importance of interpersonal differences, and that users may have different levels
of privacy concerns depending on their individual level of privacy awareness and the
image content.

Ahern et al. [2007] analyzed effectiveness of tags as well as location information in
predicting privacy settings of the photos. Further, they conducted an early study to
establish whether content (as expressed by image descriptors) is relevant to image’s
privacy settings. Based on their user studies, content is one of the discriminatory factors
affecting image privacy, especially for images depicting people. This supports the core
idea underlying our work: that particular categories of image content are pivotal in
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establishing users’ images sharing decisions. Jones and O’Neill [2011] later reinforced
the role of privacy-relevant image concepts. For instance, they determined that people
are more reluctant to share photos capturing social relationships than photos taken
for functional purposes; certain settings such as work, bars, and concerts cause users
to share less. These studies also revealed significant individual differences within
the same type of image, based on some explanatory variables relating to the identity
of the contacts and the context of photo capture, providing insights into the need
for customized, subjective models for privacy patterns. Zerr and colleagues recently
developed PicAlert [Zerr et al. 2012], which carries out content analysis for image
private search and detection of private images.

Along the same theme, Besmer and Lipford [2009] pointed out that users want to
regain control over their shared content but, meanwhile, they feel that configuring
proper privacy settings for each image is a burden. Similarly, related work suggests
sharing decisions may be governed by the difficulty of setting and updating policies,
reinforcing the idea that users must be able to easily set up access control policies
[Alessandra Mazzia 2011; Vyas et al. 2009; Cheek and Shehab 2012; Squicciarini et al.
2011; He et al. 2006; Liu and Terzi 2010]. Some notable recent efforts to tackle these
problems have been conducted in the context of tag-based access control policies for
images [Yeung et al. 2009; Klemperer et al. 2012; Vyas et al. 2009], showing some initial
success in tying tags with access control rules. However, the scarcity of tags for many
online images [Sundaram et al. 2012], and the workload associated with user-defined
tags precludes accurate analysis of the images’ sensitivity based on this dimension
only. Other work [Fang and LeFevre 2010; Cheek and Shehab 2012; Alessandra Mazzia
2011; Bonneau et al. 2009a, 2009b; He et al. 2006] has focused on generic users’ profile
elements and typically leveraged social context rather then users’ individual content-
specific patterns.

A loosely related body of work is on recommendation of tags for social discovery
[Sawant 2011; Plangprasopchok and Lerman 2007; Yu et al. 2010; Chen et al. 2008]
and for image classification [San Pedro and Siersdorfer 2009; Yu et al. 2009; Chen et al.
2008] in photo sharing websites like Flickr. In these works, the typical approach is for
authors to first collect adequate images and then classify images according to visual and
context-related features. After users upload their images, the server extracts features
and then classifies and recommends relevant tags and groups.

Also related is the work from Henne and colleagues [Henne et al. 2013], who provided
an extended analysis of privacy threats as they arise from photos in popular online
content sharing sites, such as Flickr. As noted by Henne and others [Madejski et al.
2012; Xu et al. 2015], privacy threats result from either a user’s own actions or shared
photos or are unintentional, as a consequence of others’ photo uploads. We note that
both types of threats are important and of increasing relevance and can yield to “errors”
or unintended issues. In this work, we keep our focus on image protection based on
access policies, under the implicit assumptions that these are applied by one authorized
entity, that is, the image uploader. We note, however, that our work is agnostic to the
problem of ownership: A policy could be applied either by the party who owns the image
or by a third party seeing him- or herself tagged or exposed in an image uploaded by
others. We acknowledge that this may raise some interesting new research questions
that we plan to explore in the future.

Finally, there is a large body of work on image content analysis for classification
and interpretation (e.g., Chapelle et al. [1999], Sawant et al. [2011], Ng et al. [2007],
Vailaya et al. [1998], Zhuang and Hoi [2010], Wang et al. [2009], and Deng et al. [2010]),
retrieval (Datta et al. [2008], da Silva Torres and Falcão [2006], He et al. [2002], and
Chatzichristofis et al. [2009] are just some examples), and photo ranking [Sun et al.
2009; Yeh et al. 2010], also in the context of online photo sharing sites, such as Flickr
[San Pedro and Siersdorfer 2009; Yu et al. 2009; Chen et al. 2008; Sundaram et al.
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2012; Rabbath et al. 2011, 2012; Choudhury et al. 2009]. This previous work is useful
in identifying meaningful content-based features for effective image content extraction,
discussed in Section 4.

We presented a preliminary version of this work in Squicciarini et al. [2014]. In
this extended work, we extend previous contribution in a number of ways. First, we
introduce a new perspective in the analysis of the images, in that we introduce a new
complex semantic feature that has never been linked to image privacy, that is, senti-
ment feature. We show how the sentiment an image evokes helps in linking an image’s
disclosure setting. Further, we also perform an in depth analysis of outliers, carry a
large amount of new experiments, and provide a new in-depth set of considerations on
the role of the analyzed features in helping uncover privacy patterns.

3. PROBLEM STATEMENT

The objective of our work is to infer adequate privacy settings for online images, based
on a community perspective of general users’ privacy preferences.

Our goal is twofold: (1) We aim to identify a variety of visual features that can be
informative in profiling images’ privacy needs, and (2) among the identified features,
we wish to determine the smallest set of features that, by themselves or combined
together with others, can perform well in properly defining the degree of sensitivity of
users’ images. We note that these are challenging objectives, as the classification we
hope to achieve is based on the subjective notion of privacy that therefore attempts to
assign a “semantic” meaning to an image rather than simply describe its main content
(or extract the context).

Our approach is to consider both images’ visual content and their associated meta-
data. The intuition underlying content-based features is that, as demonstrated in re-
cent work (e.g., Besmer and Lipford [2009]), although privacy is a subjective decision,
certain visual content is likely personal or too sensitive to be disclosed to a public
online audience. Hence, we expect that certain visual elements of an image, like the
presence of edges, its color, its predominant elements, or the presence of faces, may
give some insights about its degree of privacy. Our content-specific features include a
selection of both “basic” features commonly adopted in image processing, as well as
more abstract, sophisticated features. Among others, we experiment with sentiment
features. Sentiment-related features refer to the ability of capturing the emotions and
feelings reflected by an image.

On the contrary, metadata, typically defined in terms of keywords extracted from
tags or captions, can provide insights into the image’s context, that is, where it was
taken, what it represents to the labeler (e.g. the image owner), what feelings it evokes,
and so on.

Additional contextual dimensions are purposely not considered for the purpose of this
study. For instance, we do not consider any additional social networking or personal
information about the photo owners and the site where the image was originally posted,
as we aim to leverage to the extent possible the content carried by the image itself.
Further, information about a photo poster and his or her online social network activities
may not be available or easily accessible.

Our learning models try to address the stated goals using a blend of visual and
metadata features using two alternative privacy models. First is a binary model, and
this accounts for the case of an image that is either to be disclosed or not (public vs.
private). The second privacy model accounts for the more complex case of an image to be
placed in an online social networking site, where users may choose from a fine-grained
set of options (i.e., should a friend view the images? should they be allowed to download
it? should family members be allowed to view and or comment on the image?). In this
case, privacy settings will be defined by multi-option privacy privileges and various
disclosure options.
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4. IMAGE RELEVANT FEATURES

In this section, we discuss the image features considered for our analysis.

4.1. Visual Features

We are interested in identifying a few pivotal features that can be useful for image
classification with respect to privacy. We next describe our selected visual features and
provide some observations from the use of the features for privacy models.

—SIFT [Lowe 2004b]. As an image’s privacy level may be determined by the presence
of one or more specific objects rather than all of the visual content (e.g., think about
an image with somebody carrying a gun and the same image with the person hold-
ing flowers instead), features able to detect interesting points of images are needed.
SIFT, being one of the most widely used features for image analysis in computer
vision, is such a feature. It detects stable key point locations in the scale space of
an image. In simple terms, the SIFT approach is to take an image and transform it
into a “large collection of local feature vectors” [Lowe 2004a]. Each of these feature
vectors is invariant to any scaling, rotation, or translation of the image. We ex-
tract an image profile based on the state-of-the-art model called bag-of-visual-words
(BoW) [Sivic and Zisserman 2003; Yang et al. 2007], which can effectively evaluate
the image similarity and is widely used in image similarity search, image retrieval,
and even content-based social discovery [Sawant 2011]. The image BoW vector is
first obtained by extracting the features of preferred images and then clustering
them into the visual word vocabulary �, where each element is the distinct word
occurrence. Features are extracted for each image and each element of the feature
vector is mapped onto one of the bag of words and, once all the elements are checked,
we get a sequence of numbers whose length is equal to the length of the BoW. Each
number represents the number of elements in the original SIFT feature vector, which
have been mapped onto the corresponding visual word. As a result, an image profile
is created S = {s1, . . . , sm}, where si reflects the strength of image’s preference on
word wi and m is the size of �.

—Sentiment. The emotions evoked by an image may be tightly related to an image’s
privacy needs. Accordingly, we leverage a Visual Sentiment Ontology (VSO) to de-
tect some sentiments. A VSO is constructed based on understanding that the visual
concepts are strongly related to sentiment [Borth et al. 2013]. More precisely, VSO is
built on psychological theories and web mining comprising sentiment carrying con-
cepts called Adjective Noun Pairs (ANPs). Cute Dog, Beautiful Day, Disgusting Food
are a few examples of ANPs. A set of such strong sentiment-carrying concepts are
collected and each of these concepts are encoded with visual information pertaining
to images that are relevant to that ANP. The detector library identifies a total of
1,200 concepts. Given a test image, the ANP detector framework outputs a series of
1,200 decimal numbers, each in the range of 0–1. Each of these numbers indicates
the degree of presence of the corresponding ANP in the test image.

—Red Green Blue (RGB). Images with a given color and texture patterns can be mapped
into certain classes, based on what is learned from the training set. For example, in-
stances with a pattern of green and blue may be mapped to public images, being
indicative of nature. Accordingly, we include the RGB feature to extract these po-
tentially useful patterns. RGB is a color space for image representation, and Hue,
Saturation, and Brightness (HSB) values can be obtained, for example, by a color
space conversion from RGB to HSB, obtaining a feature detector. The feature de-
tector components are therefore Red, Green, Blue, Hue, Saturation and Brightness.
Values corresponding to each of the variables are extracted from an image, and each
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Fig. 1. FACIAL detection and extraction -examples.

feature is encoded into a 256byte length array. This array is serialized in sparse
format where each instance corresponds to the feature vector of an image.

—FACIAL Detection. Images revealing one’s identity are more likely to be considered
private [Ahern et al. 2007], although this is subjective to the specific event and
situation wherein the image was taken. Henceforth, to discriminate to the extent
possible between purely public events with people and other images involving various
individuals, we detect the ratio that the area of faces take in the image to identify
whether they are or not prevalent elements in the image.

We extract FACIAL keypoints using the FKEFaceDetector framework. Information
about presence of faces is encoded in two attributes for each image, similarly to Zerr
et al. [2012]. One attribute represents the number of faces found in the image and
the second attribute indicates the amount of area occupied by faces in the image.

The framework detects faces that are straight up and clearly visible. In some
images, though there are faces visible, due to various factors, the faces could not be
detected. Images with faces not clearly visible, images with dark backgrounds, and
images that show faces from acute angles are a few factors that can result in faces
not being detected by the API (Application Programming Interface). In Figure 1, we
show two sets of images where FACIAL detection is successful and where it fails.

—EDGE Direction Coherence. As more and more users enjoy the pervasiveness of cam-
eras and smart devices, the number of online images that include some “artistic”
content (landscapes, sceneries, etc.) is also increasing. Hence, we would like to in-
clude a feature that can help with capturing similarities in landscape images. One
such feature that has proven to be useful for models on landscape images is EDGE
Direction Coherence, which uses EDGE Direction Histograms to define the texture
in an image. The feature stores the number of edge pixels that are coherent and non-
coherent. A division of coherence and non-coherence is established by a threshold on
the size of the connected component edges. This feature uses 72 bins to represent co-
herent pixels and one bin for non-coherent pixels. After separating out non-coherent
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Fig. 2. Example of a Flickr image and its tags.

pixels, we backtrack from a random coherent pixel to another and check if it is within
5◦ and then update the corresponding coherent bins [Vailaya et al. 1998].

4.2. MetaData

Annotation of online images is now common practice, and it is used to describe images,
as well as to allow image classification and search by others. Users can tag an image
by adding descriptive keywords of the images content for purposes including organiza-
tion, search, description, and communication. For instance, each image in Flickr has
associated one or more user-added tags, as well as a set of Flickr-generated tags. In
this work, we focused on user-generated tags only and created a feature vector of tags
for each image accordingly. We created a dictionary of words from all images in the
training set such that there are no duplicates (in the dictionary) and applied basic
stemming methods to limit the noise introduced by misspelling, use of plurals, and so
on. Once we have the dictionary ready, each feature vector is represented in sparse
format, where an entry of the vector corresponds to a word. Each unique word that is
a tag for an image has an entry in the vector. This sparse representation allows for a
compact feature vector for each instance, removing unnecessary information about the
absence of keywords, which are in the dictionary and not in the image.

Accordingly, we try to correlate images by using the feature vector to capture usage
of the same tags. We observe that most of the images that show similar descriptive
patterns have extensive word usage that is similar. An example of tags usage in Flickr
is given in Figure 2. For this image, the associated words are beach, water, and ocean,
which all have a high degree of similarity. Similar findings are reported for other
images, where tags appear to be extremely useful: As we further elaborate in Section
5.2.4, tags are a predominant feature for privacy classification purposes, although
acceptable results are found even in the absence of available metadata.

5. PRIVATE VERSUS PUBLIC IMAGES: EMPIRICAL ANALYSIS

Our analysis includes two key steps. First, we analyze a large labeled dataset of images
posted online, by means of unsupervised methods, to identify the main distinctions
between private and public images. Second, we investigate privacy images classification
models, taking into account the results of our clustering analysis and the features
discussed in the previous section.
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We employ two datasets. For the first dataset, we took a sample of Flickr images from
the PicAlert dataset [Zerr et al. 2012]. The PicAlert dataset includes randomly chosen
Flickr images on various subjects and different privacy sensitivity. Each image in the
dataset is labeled using private and public labels by randomly selected users. We focus
on about 6,000 images randomly sampled from the original dataset to include actual
online images (i.e., still on the site) with associated keywords. The dataset includes
public and private images in the ratio of 2:3. The second dataset was sampled from the
Visual Sentiment Ontology repository [Borth et al. 2013]. The repository has a good
blend of landscape images, animals, artwork, people and so on. About 4,000 Flickr URL
(Uniform Resource Locator) were randomly sampled from the dataset. The associated
keywords were extracted from the Flickr site directly.

Some of the privacy labels were already part of the first dataset, whereas we
use crowdsourcing methods (i.e., Amazon Mechanical Turk (AMT)) for labeling the
additional datasets and complement existing labels with more complex settings (see
Section 6).

Of course, similarly to Zerr et al. [2012], the adopted privacy labels only capture an
aggregated community perception of privacy rather than a highly subjective, personal
representation. We argue that the provided representation is is correlated to textual
and visual features in a plausible way and can be predicted using carefully crafted
classification models. We also believe that using a dataset reflecting a community,
rather than a dataset created from a single author, poses some interesting unique
challenges. Because images are not linked to individual users and the image authors
do not label them with their privacy preferences, it is non-trivial to find classification
models and the set of features that can help extract them.

5.1. Characteristics of Private and Public Images

To understand what makes images private or public, we first explored some of the
consistent characteristics among each of these two classes, considering both visual and
metadata elements.

5.1.1. Visual Differences between Public and Private Images. We first explored whether there
are any consistent types of images or image content that can help define private versus
public images.

Our approach to identify these characteristics is to group images by content similarity
to explore the visual similarities that define the clusters. To this end, we used unsu-
pervised learning methods. In particular, we applied the Java API for Content Based
Image Retrieval (CBIR) from Latha and colleagues [Latha 2011]. This implementa-
tion performs image clustering to identify clusters among public and private images,
respectively. The API uses wavelet-based color histogram analysis and enhancements
provided by Haar wavelet transformation. With color histograms, the image under con-
sideration is divided into sub-areas and color distribution histograms are calculated
for each of the divided areas. The wavelet transformation is used to capture texture
patterns and local characteristics of an image. An image retrieval algorithm is used for
image retrieval based on similarity.

On running CBIR, we observed similarity patterns among images in different sets
that were clustered. Most public images belong to one of three categories as follows:
(1) Women and Children, (2) Symbols and black-and-white images, (3) Artwork. Private
images could be mainly grouped into (1) People and (2) Sketches. Note that while
there is some overlap among these categories, the images with women and children in
the public categories portray mostly photos taken in public settings, whereas private
images portraying people are close-up images with more skin exposed.
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As a first observation, we note that not all images of people are private. Our clusters
show that images indicative of people’s life events, personal stories, and so on, are
considered equally confidential. Second, images with children or humans in general are
equally classifiable as private or public, depending on the specific visual representation
in the image. Finally, sketches appear to be deemed sensitive. We speculate these may
be labeled as private, as they may represent personal aspects of one’s life, like a tattoo
or a piece of art.1 These observations confirm that simply considering the presence
of people as the only relevant feature may not be sufficient (we provide additional
results on this aspect in the next section) and that multiple features are needed, both
visually (to describe the content in the cluster classes) and through text, to provide
some contextual information.

5.1.2. Keywords Patterns in Public and Private Images. To further our understanding of
the images and their privacy needs, we analyzed the keywords associated with each
image. Specifically, we enriched the dataset by adding annotations for each image in the
dataset and extracted these annotations from the Flickr’s tagging systems. Each image
in Flickr has associated one or more user-added tag, which we crawled directly from
Flickr, as it was not part of the original dataset. To obtain keyword groups reflective of
the most generic topics used to tag and index the images, we clustered images based
on keyword similarity.

Precisely, we performed keyword hypernym analysis over all of the keywords associ-
ated with the images [Squicciarini et al. 2011], using Wordnet as a reference dictionary.
For each keyword ti, we created a metadata vector listing the hypernyms associated
with the word. After extracting all the hypernyms of all the keywords for an image,
we identified a hypernym per part of speech. We identified all the nouns, verbs, and
adjectives in the metadata and stored them as metadata vectors τnoun = {t1, t2, . . . , ti},
τverb = {t1, t2, . . . , tj}, and τadj = {t1, t2, . . . , tk}, where i, j, and k are the total number
of nouns, verbs, and adjectives, respectively. This selection was done by choosing the
hypernym that appeared most frequently. In case of ties, we choose the word that is
closest to the root or baseline.

We repeated the same procedure over different parts of speech, that is, noun, verb,
and adjective. For example, consider a metadata vector τ = {“cousin,” “first steps,”
“baby boy”}. We find that “cousin” and “baby boy” have the same hypernym “kid,” and
“first steps” has the hypernym “initiative.” Correspondingly, we obtain the hypernym
list η = {(kid, 2), (initiative, 1)}. In this list, we select the hypernym with the highest
frequency to be the representative hypernym, for example, “kid.” In the case where
there are more than one hypernym with the same frequency, we consider the hypernym
closest to the most relevant baseline class to be the representative hypernym. For
example, if we have a hypernym list η = {(kid, 2), (cousin, 2), (initiative, 1)}, we
will select “kid” to be the representative hypernym, since it is closest to the baseline
class “kids.” Once we computed the representative hypernyms for each instance, the
next step was to cluster the instances based on the hypernyms. This was achieved by
calculating the edit distance of each existing cluster center with a new instance and
the weighted average distance is compared to a threshold value. The new instance is
added to a cluster, once the edit distance between the corresponding cluster center and
the instance is below the threshold. If the distance from none of the cluster centers falls
below the threshold, then the new instance is added as a part of a new cluster and the
instance is made the cluster center. In addition, existing clusters keep updating their
cluster centers as new instances are added. A cluster center represents a noun, verb,

1Note that our observations are mainly qualitative; to fully grasp the difference of these classes, one may
need human analysis and additional image processing work, which goes beyond the scope of this work.
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Table I. Common Keywords in Private Images

Cluster Keywords

1
garment, adornment, class, pattern,
appearance, representation

2
letter, passage, message, picture,
scripture, wittiness, recording, signaling

3
freedom, religion, event, movement,
clergyman, activity, ceremonial, gathering, spirit, group, energy

4
region, appearance, segment,
ground, line, metal, passage, water, structure, material

5
body, reproduction, people, happening, soul,
organism, school, class, period, respiration

Fig. 3. Example images belonging to the first and second clusters of private images, respectively (relation,
water, and appearance).

and adjective. These parts of speech are chosen as they are the words with highest
frequency among the instances of the cluster.

Using the above methodology, we clustered about 6,000 keywords. Keywords cluster-
ing resulted in four clusters for keywords bound with private images and five clusters
for keywords related to public images. On average, we observed that there were around
15 hypernyms per cluster.

Table I shows the prominent keywords in the clusters obtained by grouping keywords
of private images. Each of the five clusters being identified projects a particular aspect
or a concept (clusters are numbered for convenience only). Figure 3 shows sample
images being tagged with keywords from the first and second clusters, respectively.

Cluster 1 represents adornment patterns and physical features. Cluster 2 mainly
includes words about writing and communication. Cluster 3 hints at religion or a reli-
gion event. Cluster 4 indicates physical structures and perceivable entities. Keywords
in the final group gravitate around children and also people at large. These results
are consistent with the three image types identified by clustering images per visual
content (examples are reported in Figure 3). Specifically, two of the keywords clusters
(labeled for convenience as 2 and 3) are consistent with the image cluster inclusive of ab-
stract images and images about sketches, whereas the keyword cluster with keywords
surrounding children is consistent with the “women and children” cluster previously
identified.

Different patterns were observed for keywords of public images. As shown in
Table II, after the clusters were formed, we observed that cluster 1 mainly grouped
words related to a time scale or an event that happened in the past or that is set to
happen in the future. Cluster 2 has words related to a phenomenon or something that
involved movement. Cluster 3 has words that described dressing style or appearance
patterns. Cluster 4 described art work or objects with patterns. Examples of images
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Table II. Common Keywords in Public Images

Cluster No Keywords

1
season, hour, period, decade, leisure,
beginning, drib

2
phenomenon, happening, relation,
passage, electricity

3
covering, vesture, case, people,appearance,
adornment, lacquerware, piece, attire, beach

4
curio, artifact, art, crockery,
lceremonial, pattern, covering

Fig. 4. Example images belonging to the first and second clusters of public images (season and electricity,
respectively).

linked to the keywords in public images are shown in Figure 4. These patterns shed
light on the themes around private and public images. Some of these patterns (e.g.,
artwork) were already observed while clustering the images based on visual content
using Content Based Image Representation. In addition, clustering the images based
on hypernyms of the associated keywords uncovered some additional descriptive pat-
terns, like appearance-related or movement-related images, that were not observed
through our analysis based on content-based similarity.

5.2. Image Classification Models

We investigate privacy images classification models with three objectives. First, we aim
to compare visual features versus metadata to understand which class of features is
more informative for privacy considerations. Second, we evaluate the performance of all
the individual features used to gain an understanding of which features can be more
effective in discriminating private versus public images. Finally, we aim to identify
the smallest combination of features that can successfully lead to highly accurate
classification.

We adopt supervised learning, based on labeled images (or items) for each category.
Our datasets used for testing and training always preserve a 2:1 ratio, unless specified
otherwise. That is, for every private (positive) image, there are two public (negative)
images. We maintain this ratio, as it is usually the case that most images are actually
public, and only a fraction of them contains private content.

5.2.1. Individual Features Analysis. We begin by studying the performance of individual
features. We specifically evaluated the performance of classifiers trained on 4,000 la-
beled images and evaluated them on a test set of 500 images, using one feature per
model.
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Table III. Overall Accuracy of Various Learning Models

Feature
Learning Model SIFT TAGS FACIAL Features

Na’́ive Bayes 49.8 63.9 60.6
Na’́ive Bayes Multinomial 55.5 76.04 53.5

Logistic Regression 59.6 74 60.3
SVM 59.8 81 62.75

k-nearest neighbors 59 73.75 59.7

Table IV. Individual Features’ Classification Models over 4,500 Images

Features Accuracy Precision Recall
TAGS 78.2 0.791 0.782
RGB 56.6 0.576 0.548
SIFT 59 0.613 0.59

FACIAL Feat. 61.2 0.584 0.612
EDGE Dir. Coh. 54.2 0.588 0.542

Sentiment 73.6 0.72 0.701

There are a variety of supervised learning models such as linear regression, näive
Bayes, decision trees, and so on. Each model performs well for a particular scenario
and conditions. Factors like heterogeneity of data, data redundancy, presence of inter-
actions among features, and so on, should be considered when choosing and applying
a learning algorithm. Since the features that are produced using image extraction are
independent and discrete, most of the mentioned models can be helpful for classifica-
tion purposes. We use the standard k-fold cross-validation technique (with k set to 10)
to estimate performance of a learning algorithm in the dataset. Both training and test
items are represented as multi-dimensional feature vectors. Labeled images are used to
train classification models. Table III shows k-fold cross-validation results on different
supervised learning models. These results are acquired by studying the performance of
individual features on different supervised learning models. We observe that Support
Vector Machine (SVM) performs consistently better than the other models in predict-
ing image privacy, regardless of the specific feature being considered. Accordingly, we
determined that SVM is a strong fit for our supervised learning analysis.

SVMs are a class of supervised learning models that analyze data and recognize
patterns used for classification. SVMs construct a hyperplane that separates the set of
positive training examples (photos tagged as “private”) from a set of negative examples
(photos tagged as “public”) with maximum margin. The main aim of the model is to
separate training data with minimum or no errors.

Using SVM (with RBF kernel) as a learning model, we then analyze more in depth the
performance of individual features. Results are reported in Table IV. As shown, TAGS
is by far the best-performing feature. Content-based features have lower accuracy, with
the worst observed for the EDGE Direction feature, for which accuracy is only 54.2%.
Similar results are observed when we vary the size of the training data for various
features, as reported in Figure 5. As shown, the best features are consistently TAGS
and SIFT features, regardless of the size of the training data.

These results provide initial evidence that tags are fairly reflective of images’ content.
Differently, visual features by themselves appear not to be sufficient for privacy clas-
sification, most likely due to the heterogeneous content of the images being analyzed
(e.g., FACIAL features are inaccurate on images with landscape or food only, whereas
EDGE Direction does not perform well on images with faces). We also observed that
most pictures that had people or faces were difficult to classify. This can be attributed
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Fig. 5. Accuracy analysis of linear models with single features.

to the fact that just detecting a person on the image is not sufficient to provide an
exact representation of the image. For example, a beach photo with family might be
regarded as a private image. But, an image shot in a similar setting and background
with a celebrity or a holiday advertisement might be regarded as public. This variation
is very difficult to capture accurately without the help of user-defined keywords, which
contribute to add contextual information to the image.

Hence, a more sophisticated model combining some of these features needs to be
carefully designed.

5.2.2. Image Pruning for Outlier Detection. Our dataset is very diverse, and it may include
many noisy images and misplaced labels, especially given the original labeling method
adopted (i.e., crowdsourcing). In order to test whether outliers may be successfully
removed from the image set, we deployed a distance-based pruning method for outliers
(from the training set).

Our outlier detecting mechanism, inspired by Ramaswamy et al. [2000], suggests
that anything that seems to go out of pattern in a clustering process is called a deviation.
Our task is to find out such deviations or outliers. As per the generic definition of
outliers, for a given point for a particular distance d and a number of points k, a data
point is called an outlier if it has no more than k points within the distance radius d
from it. Generally a user has to determine the values of d and k via trial and error.
We implement the method as described by Ramaswamy et al. [2000]. The value of the
distance d need not be hard coded and tested every time. The value of k is varied and
the number of outliers n is instead already established. If D(p) is the distance of the kth
nearest neighbor of p, then that is the distance to be considered. So for a given value
of n, where p is the point and D(p) the distance from the kth neighbor, it is considered
an outlier if no more than n − 1 other points p′ have a distance greater than D(p′). In
our experiment, the training set is sorted as per the distances D(p), and the value of n
decides the outliers to be pruned.

We also compared this method with a baseline, an average pruning method, that
instead prunes images from the training set if they are far enough from the average
value of the image for any given image. We report some of the findings in Table V. The
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Table V. Outliers Detection Using Pruning- Accuracy Is Computed
by Averaging the Class Results

No of classes Features Dataset size Accuracy
4 SIFT+ averaging 1,600 0.58
4 SIFT+knnprune 1,600 0.63
2 dSIFT+average 4,800 0.64
2 SIFT 4,800 0.67
2 SIFT + Knnprune 4,800 0.69

results summarize the difference in performance for a simple classification task based
on SIFT only (since it is one of the most successful features). In the experiments, we
varied both the number of classes (private, public or clear public, public, private, clear
private) and the size of the dataset. To create an unbiased dataset sample, we use a
ratio of 1:1 for every class.

As can be seen, pruning brings a significant improvement of almost 9% for the case of
two class labelings. This early evidence seems to justify a systematic pruning method
to remove unnecessary noisy images.

5.2.3. Models Combination. We explored various combinations of supervised learning
models for image privacy, using the features listed in Table IV. For these experiments,
we did not do any specific image pruning. We were specifically interested in under-
standing whether the accuracy of visual features, which was low for single-feature
models, could be improved by combining them into a single classifier. The intuition is
that given that these visual features seem to work best on certain types of images, we
aimed to test whether, when combined together, they would complement one another,
reaching a higher degree of accuracy.

We tested combinations of models for a fixed set of images, increasing the size of the
training data, ranging from 1,000 to 3,700, keeping 500 as the size of the test data. To
combine different features, we linearly combined the vectors of feature representations
of individual features into a single vector. For example, given F1 = {s0, s1, . . . , sj} and
F2 = {r1, r1, . . . , rk}, where F1 and F2 are two different feature representations of lengths
j and k for an image, combining them linearly results in a new feature vector Fcom =
{s0, s1, . . . , sj, r1, r1, . . . , rk} of length j + k.

Our results, reported in Figure 6 for two-feature combinations, show an overall
consistent increase in the accuracy of prediction across most of the combinations with
the increasing size of training data. The exception to this pattern is for combinations
which involved FACIAL features, where the peak accuracy is observed when the dataset
size is in the 2500–3000 interval, followed by a decrease in the prediction accuracy after
the dataset size exceeded 3000 instances.

In Figures 7 and 8, we report the results for models combining three and four or
more features, respectively. Some interesting observations are as follows:

—All combinations, except the FACE, RGB, SIFT combo (which is much lower), have
an accuracy ranging from 65% to 74%, therefore achieving sub-optimal accuracy.

—When TAGS are in any combined classifier, we obtain a better model than the same
model with no TAGS as a feature, validating the role of metadata to complement
visual information extracted through content-specific features. This observation is
valid also for two-feature models (see Figure 6), where the best accuracy is ob-
tained with SIFT+TAGS on a labeled dataset of 3,300 training instances, followed
by EDGE+TAGS.

—SIFT+TAGS appears to be strongest combination for both two-feature and three-
feature models. Intuitively, SIFT captured all the visual key points of the images,
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Fig. 6. Feature analysis of models with two features concatenated.

Fig. 7. Accuracy analysis of combined classifiers with three features.
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Fig. 8. Accuracy analysis of linear models with five features.

hence their core, discriminating visual patterns. TAGS, on the other hand, gave an
indication of the overall context of where the images were taken.

—When we disregard TAGS as a feature and use only visual features for prediction, we
reach a performance of 70% over a dataset of size 4,500 for SIFT, EDGE, and RGB
combined together. The combined classifier resulted in a BEP of 0.667.

—Model combinations including sentiment seem not to provide exciting results com-
pared to other (sentiment-free) combinations. For instance, as reported in Figure 7,
no combination including sentiment feature achieves the performance of TGS, FACE,
and RGB combined together. The best results for sentiment features combination are
about 60–65% accuracy against about 75% accuracy achieved by the TAGS, FACE,
and RGB combination.

—Simply adding features is not always a recipe for improved accuracy: Combining the
visual content with metadata leads to a decreased accuracy of the metadata classifier
alone (see Figure 8 for the performance of all features combination). For instance,
SIFT+FACE+RGB performs worse oversall than their individual features.

5.2.4. TAGS and Visual Models. In this feature study, we explore how TAGS may com-
plement another visual feature to accurately determining adequate image privacy.

We adopt a different modeling approach in an attempt to improve the prediction
accuracy and use an ensemble of classifiers, in which two classifiers are individually
used to predict the outcome for a particular instance. Based on the prediction data and
the confidence of prediction, the ensemble outputs a final classification result that is
computed in consideration of both learning models.

In particular, in our case, an ensemble of classifiers is a collection of classifiers, each
trained on a different feature type, for example, SIFT and TAGS. The prediction of
the ensemble is computed from the predictions of the individual classifiers. That is,
during classification, for a new unlabeled image xtest, each individual classifier returns
a probability Pj(yi|xtest) that xtest belongs to a particular class yi ∈ {private, public},
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Table VI. Performance of Ensemble Models Combining TAGS with One Content Feature

Features Accuracy Precision Recall
TAGS 82.4 0.859 0.824

TAGS and RGB 60.4 0.605 0.604
TAGS and SIFT 90.4 0.904 0.904

TAGS and FACIAL 50.2 0.498 0.502
TAGS and EDGES 84.3 0.844 0.843

TAGS and Senti 84.6 0.844 0.846

where j = 1, 2. The ensemble estimated probability, Pens(yi|xtest) is obtained by

Pens(yi|xtest) = 1
2

2∑

j=1

Pj(yi|xtest).

In experiments, we used the option buildLogisticModel of Weka to turn the SVM
output into probabilities.

Using an ensemble of classifiers, an image that cannot be classified with good confi-
dence by one classifier can be helped by another classifier in the ensemble that might
be more confident in classifying an image as public or private. We identified that TAGS
and all the visual features can be these complementary classifiers of normalized fea-
ture vectors: TAGS are collected from the keywords that a user adds to represent the
image. Visual features extract the visual patterns from the image itself.

Performance metrics, obtained from a dataset of 4,500 images (4,000 training and
500 tests) reported in Table VI confirm this intuition. In particular, we observe a peak
in the performance when SIFT and EDGE are combined together, along with ensemble
of SIFT and TAGS. The latter represents the best-performing combination, confirming
and improving on the trend and observations made in our combination models (see
Section 5.2.3). We note that (although not reported in detail) other ensemble classifiers
that did not include TAGS do not reach interesting performance. We speculate that
this is due to the very nature of the features, which fail to complement one another in
the ensemble model.

In addition, to assess the validity of our ensemble, we also compare our logistic model
with other types of ensembles using a training dataset ranging from 1,000 to 2100
images. We use a testing set of 500 items and again perform 10-fold cross validation.
The results are shown in Figure 9. Precisely, we tested our best-performing combination
of concatenated models, that is, SIFT+TAGS with two alternative methods. The first
method is boosting. With boosting, we aimed at reducing bias in the data and improving
the weak learning models computed with SIFT and TAG by generating one strong
classification model. Boosting calculates the outputs of the TAGS and SIFT models
and then averages the result using a weighted average approach. By combining the
advantages and pitfalls of these approaches, we should obtain a good predictive power
for a wider range of input data. Second, we performed stacking, which should help
even further, as it calculates the individual models and then uses a single-layer logistic
regression model as the combiner to compute the final label. As shown, the overall
accuracy is lower than the accuracy reported in Table VI, due to the smaller dataset
being used. Nevertheless, the accuracy of our ensemble model is consistently stronger
than the other methods (reaching 76%), only capped by stacking in a couple of rounds.2

In Figure 10, we show the precision vs. recall graph for the ensemble classifier of SIFT
and TAGS. Accordingly, the BEP, the point where the value of precision is equal to that

2Further experiments, which are outside the scope of this work, would help to clarify the reasons beyond
differences in performance among these models.
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Fig. 9. Comparison of ensemble with adaboost and stacking.

Fig. 10. Precision vs. Recall for SIFT+TAGS ensemble models.

of recall, stands at 0.89. Compared to the PicAlert framework [Zerr et al. 2012], which
presented a BEP of 0.80 after combining textual and a larger number of visual features,
the ensembles classifier of SIFT and TAGS shows a stronger performance. In short,
these results demonstrate that the ensemble of classifiers can capture different aspects
of images that are important for discriminating images as private vs. public, with a
small set of features. Note that these experiments also confirm the poor performance of
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Fig. 11. False-positive and false-negative images of TAGS.

FACIAL features, which achieve very low precision and recall, showing that the choice
of visual features is to be carefully made.

5.2.5. Error Analysis. We further analyzed our results, as obtained by our strongest
learning model, which is an ensemble of SIFT and TAGS, and compared these results
with the performance of the classifier labeled using just TAGS, which by and large was
the best single-feature classifier in terms of accuracy. Further, we used unsupervised
learning (CBIR) [Latha 2011] to discover emerging patterns in the labeling errors
introduced by these models and understand the factors that influence an image to be
either public or private.

5.3. Clustering of Images

Figure 11 shows the results of clustering images that were wrongly classified using
TAGS. We separated the wrongly classified images into two sets as follows: Public
images classified as Private (false positive) and Private images classified as Public
(false negative). The image reports false positives on the top and false negatives at the
bottom. False positives were mainly 1. artwork, 2. women, and 3. non-living things or
objects. False negatives were mainly 1. images filled with alot of color and 2. images
with dark background. We also observe that the majority of the images that were
mis-classified were the ones that have few tags or if the user tagged the images with
unconventional words, like using emoticons or a different language. These few cases
are not very helpful and might result in misclassification.

Based on these error patterns, we followed up by analyzing our model based on an
ensemble of SIFT+TAGS and see the improvement it brings. Recall that, as shown in
Table VI, the two classifiers, SIFT+TAGS and only TAGS, have a gap in accuracy of
almost 8%. As mentioned, as tags may not always be present in public images, we aim
to identify a classifier that would perform well even when the keywords associated with
images are not useful. The keywords might not be useful for many reasons, such as the
usage of emoticons in words, which would pose problems in mapping similar words.

Accordingly, the goal of this experiment was to estimate whether some of the images
misclassified by a model relying on TAGS features only could be corrected introducing
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Fig. 12. False-positive and false-negative images of TAGS and SIFT+FACIAL.

SIFT and whether these errors are fewer in number but of the same images or whether
the errors with SIFT+TAGS are due to a different set of images. Figure 12 reports
the results of false positives and false negatives after running the image similarity
analysis for the ensemble classifier of SIFT and TAGS. Since the prediction accuracy
of SIFT and TAGS is better than TAGS, it was expected that the analysis would show
a reduced number of images. However, the results show an interesting pattern. The
image patterns that were observed by using TAGS as a classifier were not observed by
using the ensembles classifier. The clustering of images revealed that the main error
of classifying images using the ensembles classifier were because of unclear faces or
background. In some cases, we observed images that could have been labeled otherwise
based on human inspection. As such, the error patterns of the single classifier TAGS
were mostly eliminated by the ensemble classifier, and the few remaining misclassified
images are primarily due to some atypical content in the images itself (e.g., images
with no objective sensitive content still labeled as private). This means that not only
does an ensemble classifier performs accurate classification, but also that it is generally
better at understanding visual patterns. For instance, images representing women or
artwork were not misclassified in large numbers. The clusters in Figure 12 show a
completely different error pattern compared to TAGS. As we return in Section 7, this
analysis seems to warrant the need of more investigation. For instance, more advanced
ensemble models that include complex visual features could further help in improving
overall accuracy without having to include metadata.

5.3.1. Secondary Dataset Experiments. In order to verify whether our models are bound
to a specific dataset, we sampled a new set of images from the Visual Sentiment
Ontology [Borth et al. 2013] repository. The sampling was done by randomly selecting
a URL from the complete list of about 45,000 images. Using the sampled set, we tested
our best classifier, an ensemble of SIFT and TAGS, to verify whether its performance
would be similar to the performance observed on the tests carried out using the PicAlert
dataset. In the experiment, we varied the size of the training dataset from 1,100 to
2,500. Figure 13 shows the models’ prediction accuracy, computed using TAGS and
TAGS+SIFT, across both the PicAlert and Visual Sentiment Ontology datasets. We
make the following observations:

—The obtained accuracy is comparable with the accuracy observed for the models
against the PicAlert dataset.

—The overall pattern of increase and decrease in predication accuracy with a change
in size of the training set was consistent across both datasets.

—The performance of individual features is not preserved. TAGS performed slightly
better on the PicAlert dataset, whereas the ensembles combination of SIFT and
TAGS performed slightly better on the VSO dataset. This is likely due to the larger
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Fig. 13. Comparison between performance for models on the PicAlert and Visual Sentiment Ontology
datasets.

availability of high-quality tags available in the first dataset. Nevertheless, we note
that the final prediction accuracies across different sizes of datasets are within a
range of 2–3% when we compare the results from the two datasets.

6. MULTI-OPTION PRIVACY SETTINGS

In many online sharing sites (Facebook, Flickr etc), users create a web space wherein
they can control the audience visiting it; distinguishing among friends, family members,
or other custom-social groups; and, within these groups, distinguish the possible access
privileges. Accordingly, on analyzing image privacy using a binary classification model
for “public” or “private,” we investigate complex multi-label, multi-class classification
models, specifically after the options offered to Flickr users, who may distinguish among
multiple classes of users and sharing options (view, comment, download).

6.1. Learning Models

Our privacy setting problem can be mapped into a multi-label, multi-class problem.
We have three classifications to perform, and each of them includes five possible la-
bels. Precisely, the labels are “Only You,” “Family,” “Friends,” “SocialNetwork,” and
“Everyone.” Each classification is indicative of one sharing privilege and includes “view,”
”comment,” and “download” access controls for each image.

Our model is based on supervised learning, and both training and test items are
represented as multi-dimensional feature vectors. Labeled images, selected at random
from the dataset, are used to train classification models. As mentioned, we added three
categories for each image, and each category could be classified into one of the five
privacy labels above. We noticed that in most of the cases the privacy levels set by
users for the three categories are related.

For example, if a user wants to make an image commentable and downloadable, it
would be possible only if the image is viewable to the users in the same level of privacy.
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Therefore, intuitively, if we were to consider a classification model that classifies the
images according to three labels independently, we may obtain very disparate results
for each class. To account for these types of inter-relations of categories for classifying
unlabeled images, we apply the Chained Classifiers model [Read et al. 2011]. Chained
classifiers were developed to capture the dependency between categories in a multi-
category dataset. This method enables the predictions that were made on a previous
iteration on a category to be utilized in the prediction of the subsequent categories.
Each classifier in the chain is a Multiclass SVM classifier for learning and prediction.

In our context, the Chained Classifiers model [Read et al. 2011] involves three trans-
formations, one for each label. In a sense, the chained classifier simply uses SVM on
each of the labels, but it differs from multi-class SVM in that the attribute space of
each label is extended by the predicted label of the previous classifiers. Given a chain
of N classifiers, {c1, c2, . . . , cN}, each classifier ci in the chain learns and predicts the ith
label in the attribute space, augmented by all previous label predictions c1 to ci−1. This
chaining process passes information about labels between the classifiers. Although in-
creasing the attribute space might be an overhead, if strong correlations exist between
the labels, then these attributes immensely help to increase the predictive accuracy. As
an example of a correlation in our use case, the comment label has the predicted value
of the view label in the attribute space. Intuitively, an image can only be commented
on if it can be viewed.

6.2. Experimental Results

We again relied on the PicAlert dataset for these experiments. We sampled 4,500 images
and used the same features set as in our previous experiments. For labeling purposes,
we used AMT. The quality of the workers was carefully monitored. For instance, we
disregarded work from users who assigned the same set of labels for 80% of the images.
We also manually checked URLs at random to check for consistency of labels. Our final
dataset included 4,427 images.

Workers saw an image and were asked to select the most suitable privacy option
they would pick based on their privacy preferences, assuming such an image were to
be displayed on a social networking site. The question wording was as follows: “Assume
you have taken this photo, and you are about to upload it on your favorite social
networking or content sharing site (e.g., Facebook, Flickr, Google+, Picasa). Assume it
describes something related to your life. Please tell us your privacy preferences, that
is, by answering the following simple questions.” Questions followed (see Section 6.1
for the options) per every available option (view, comment, download).

As a result of this labeling effort, the distribution of labels for every image is as
follows: Forty-two percent of data is labeled as “everyone,” and family and friends
constitute about 33% of the data. Finally, the most private labels are assigned to 21%
of the image dataset. Note that, as expected, almost 50% of the images are labeled as
public. This is acceptable, as the images were actually taken from public accounts of
the Flickr site.

We compared the performance of chained classifiers against a baseline classifier
model. The baseline model involved running multi-class SVM on each of the three
classes separately, using the same set of attributes as opposed to chained classifiers that
append the predicted class label to the attribute list for the current prediction. The two
classification models (i.e., chained classifiers and baseline) were used for single-feature
analysis as well as for combinations of features. When referring to chain classifiers, in
our experiments it is important to note the following. To ensure best performance, the
order in which classifiers are chained with one another is important. That is, should the
output of the “download” be the additional attribute in the next level of classification?
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Fig. 14. Multi-option privacy settings Baseline.

To make that decision, we carried out the following simple evaluation. Intuitively,
one may be able to comment on an image on viewing it, and not vice versa. Therefore,
there may be a weak implication on “comment→view,” in that if a group of users is
allowed to comment on an image, at least the same users (if no more) are allowed to
view it. Similar considerations apply for the implication “download→comment.” Our
experiments confirm this expected order. For instance, in an experiment with 4,000 im-
ages (3,500 training and 500 testing), using TAGS as the only feature, we obtained the
following results. With the order of {comment, view, download}, our performance was
0.77 precision and 0.0754 recall. Conversely, with an order of {view, comment, down-
load}, we obtain 0.62 precision and 0.606 recall, respectively. Baseline results showed
0.64 precision and 0.604 recall. Accordingly, the order of {view, comment, download }
was maintained through the chain classifiers. Our results for both baseline and chained
classifier models are reported in Figure 14 and in Figure 15. Note that in the figure,
we reported results for the three features that performed best in our binary classi-
fication, namely SIFT, TAGS, and EDGES. We also include experimental results for
sentiment features. We increased the size of the training data, ranging from 2,000 to
4,000, keeping 500 as the size of the test data.

A few interesting observations can be made. First, we noted that TAGS, as estab-
lished already in our previous analysis, was the best-performing single feature, with ex-
tremely high prediction accuracies (up to 94%). Ensemble of features using TAGS+SIFT
and TAGS+EDGE also had high prediction accuracy, reaching up to 90%.

We also note that the model achieves an accuracy reaching around 88% in the ab-
sence of TAGS. Specifically, the combination of sentiment features plus edge yields an
accuracy of 88.94% (non-statistically significant). Because of the small difference in
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Fig. 15. Multi-option privacy settings.

performance, it is clear that the introduction of sentiment feature, while interesting, is
not as informative as expected, certainly with respect to TAGS features.

Finally, we observed that using chained classifiers increases overall performance,
regardless of the features used, in comparison to the baseline accuracy achieved using
multi-class SVM on each class individually. For instance, in the baseline model, using
TAGS alone reaches maximum accuracy of 86.5% accuracy when 3,600 images are used
for training. With chained classifiers, the same ratio of training and testing data brings
the performance up to 96.2%. Similar considerations may be made for other classes.
This result confirms that chained classifiers are useful in capturing the correlation
between the class labels and result in higher prediction accuracy.

7. DISCUSSION AND CONCLUSION

In this article, we presented an extensive study investigating models for inferring the
degree of privacy of user-uploaded online images. We studied how features extracted
from an image visual content and from user-applied metadata can inform possible
privacy settings for the same image. We considered both the case of binary privacy
settings (i.e. public/private), as well as the case of more complex, multi-class, privacy
options. Our analysis provides us with several insights on images content, their rela-
tion with privacy, and on the ability to create a model that accurately describes what
the users’ privacy patterns actually are.

First, we note that, overall, we confirm our initial hypothesis: It is possible to capture
with a certain degree of accuracy the “private” nature of an image, based solely on its
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visual content. This is true not only for images that are not managed by a single
individual, but also for images where privacy is defined as a “collective” notion and
where the labels (i.e. private/public) reflect the overall preferences of a large number
of users. As expected, most private images are mostly linked to suggestive content, the
presence of children, and other life events that one may perceive as generally private. To
capture these trends, our analysis shows that, with respect to visual features, properly
trained SIFT features seem to carry strong predictive power. Colors, faces, and shapes
or edge recognition are not sufficient to capture the complex nuances of a private image,
although they work well together—even simply concatenated with one another—and
achieve stronger predictive power than in isolation. In this respect, we also tested
the hypothesis that negative sentiments may be linked with private images (and vice
versa), in that online sites tend to primarily portray happy images when public, leaving
negative images for a smaller audience who may better sympathize with those feelings.
We note, however, that we could only partially validate this hypothesis, and more
investigation is needed. Adding the complex “sentiment” feature seems to help only
in specific model combinations. In general, the addition of keywords is substantially
more important in improving the performance of a prediction, regardless of the specific
model combination being considered.

Our work is yet just a tipping point in addressing the complex issue of online
photo privacy. As images increasingly become a main form of communication and self-
disclosure, more efficient models are to be investigated. Moving forward, to provide
even more accurate models than the ones proposed in this work, we plan to extend our
work along the following dimensions.

First, given the strong performance of TAGS, we would like to incorporate additional
textual metadata into the models to further the performance of this class of features.

Second, as anticipated in Section 5.2.5, we would like to further explore more so-
phisticated visual models and their roles in the context of complex privacy settings.
In particular, we are currently exploring using neural networks to better define the
weights and relative importance of the features used for our analysis, possibly to im-
prove the overall performance of our model in absence of tags. Early experiments show
a strong predictive power of models built on convolutionary neural networks, although
the complexity linked with training neural network models makes it challenging to
generalize any result.

Finally, we plan to extend our dataset with possibly user-owned images for person-
alized models. This will allow us to verify whether the “collective” notion of private
images extracted by these models could suit personalized privacy choices.
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