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Short Paper

Abstract. We address the problem of learning predictive models from
multiple large, distributed, autonomous, and hence almost invariably se-
mantically disparate, relational data sources from a user’s point of view.
We show under fairly general assumptions, how to exploit data sources
annotated with relevant meta data in building predictive models (e.g.,
classifiers) from a collection of distributed relational data sources, with-
out the need for a centralized data warehouse, while offering strong guar-
antees of exactness of the learned classifiers relative to their centralized
relational learning counterparts. We demonstrate an application of the
proposed approach in the case of learning link-based Näıve Bayes classi-
fiers and present results of experiments on a text classification task that
demonstrate the feasibility of the proposed approach.

1 Introduction

Recent advances in sensors, digital storage, computing, and communications
technologies have led to a proliferation of autonomously operated, distributed
data repositories in virtually every area of human endeavor. Many groups have
developed approaches for querying semantically disparate sources [1–4], for dis-
covering semantic correspondences between ontologies [5, 6], and for learning
from autonomous, semantically heterogeneous data [7]. One approach to learn-
ing from semantically disparate data sources is to first integrate the data from
various sources into a warehouse based on semantics-preserving mappings be-
tween the data sources and a global integrated view, and then execute a stan-
dard learning algorithm on the resulting centralized, semantically homogeneous
data. Given the autonomous nature of the data sources on the Web, and the
diverse purposes for which the data are gathered, it is unlikely that a unique
global view of the data that serves the needs of different users or communities
of users under all scenarios exists. Moreover, in many application scenarios, it
may be impossible to gather the data from different sources into a centralized
warehouse because of restrictions on direct access to the data. This calls for ap-
proaches to learning from semantically disparate data that do not rely on direct
access to the data but instead can work with results of statistical queries against
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an integrated view. We present a principled approach to the problem of learn-
ing classifiers from a collection of semantically disparate relational data sources
in such a setting. We use link-based Näıve Bayes classifiers as an example to
illustrate this approach. We show, under fairly general assumptions, that our
approach is guaranteed to yield classifiers that are identical to those obtained
from a centralized, integrated data warehouse constructed from the collection
of semantically disparate relational data sources and associated ontologies and
mappings. Experimental results using our implementation of link-based Näıve
Bayes classifiers [8, 9] for constructing text classifiers from text repositories based
on related but disparate ontologies demonstrate the feasibility of the proposed
approach.

2 Learning Classifiers from Semantically Heterogeneous
Relational Data

2.1 Ontology-Extended Relational Data Sources and User Views

An ontology O associated with a relational data source D is given by a content
ontology that describes the semantics of the content of the data (the values
and relations between values that the attributes can take in D)1. Of particular
interest are ontologies that specify hierarchical relations among values of the
attributes. Isa relations induce attribute value hierarchies (AVHs) over values
of the corresponding attributes. Thus, an ontology O consists of a set of AVHs
{T1, · · · , Tl}, w.r.t. the isa relation. A cut (or level of abstraction) through an
AVH induces a partition of the set of leaves in that hierarchy. A global cut
through an ontology consists of a set of cuts, one for each constituent AVH.

Figures 1(a) and 1(b) show two AVHs over the values of two attributes
Article.Topic and Article.Words, respectively, corresponding to a concept
Article of a bibliographic domain. The set of values of Article.Topic consists
of {Artificial Intelligence (AI), Data Mining (DM), Machine Learning (ML),
Natural Language Processing (NLP ), Neural Networks (NN), Genetic Algo-
rithms (GA), Case-Based (CB), Probabilistic Methods (PM), Theory (T ), Re-
inforcement Learning (RL)}. {DM,ML,NLP} represents a cut Γ through the
AVH in 1(a). {DM,NN,GA,CB,PM, T,RL,NLP} is a refinement of Γ .

Definition: An ontology-extended relational data source (OERDS) [10] is
defined as a tuple D = {S,D,O}, where S represents the relational data source
schema (concepts, their attributes, and the relations between concepts), D is an
instantiation of S, and O represents the data source ontology.

A mapping ψ from a user ontology OU to a data source ontology OD (defining
the semantics of two different views of the same domain) establishes semantic
correspondences between the values of the attributes in OU and the values of at-
tributes in OD. Examples of such semantic correspondences are equality, x = y

1 In a more general setting, an ontology O contains also a structure ontology that
describes the semantics of the elements of a schema S (concepts, their attributes,
and the relations between concepts), in addition to the content ontology.
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Fig. 1: Two Attribute Value Hierarchies (AVHs) over the values of attributes
Article.Topic (a) and Article.Words (b), respectively, corresponding to the
bibliographic domain. The dash curves represent different levels of abstraction.

(i.e., x and y are equivalent), and inclusion x < y (i.e., y subsumes x, or y
is more general than x) [11]. A subset of semantic correspondences between
two AVHs corresponding to two ontologies OU and OD, T 1 and T 2, respec-
tively, over the values of Article.Topic is {DMT1 = DataMiningT2 , NNT1 <
MachineLearningT2 , AIT1 > DataMiningT2}.

Definition: Let D1={S1, D1, O1},· · ·,Dp={Sp, Dp, Op} be a set of OERDSs.
A user ontology OU , together with a set of mappings {ψk|k = 1, · · · , p} from OU
to the data source ontologies O1, · · · , Op define a user view [10, 7].

The user view implicitly specifies a user level of abstraction, corresponding
to the leaf nodes of the hierarchies in OU . The mappings ψk can be established
manually or semi-automatically (e.g., using existing approaches to learning map-
pings between ontologies [12]).

2.2 Learning Classifiers from OERDSs

We assume the existence of: (1) A collection of several related OERDSs D1=
{S1, D1, O1},· · ·,Dp={Sp, Dp, Op} for which the schemas and the ontologies are
made explicit and the instances in the data sources are labeled according to some
criterion of interest to a user (e.g., topic categories); (2) A user view, consisting
of a user ontology OU and a set of mappings ψk that relate OU to O1, · · · , Op; (3)
A hypothesis class H (e.g., Bayesian classifiers) defined over an instance space;
(4) A performance criterion P (e.g., accuracy on a classification task).

Under the above assumptions, learning classifiers from a collection of seman-
tically heterogeneous OERDSs can be formulated as follows: the task of a learner
L is to output a hypothesis h ∈ H that optimizes P , via the mappings {ψk}.

In this setting, the statistical query answering component of the algorithm
poses a statistical query against the user view; decomposes the query into sub-
queries and translates them into queries that can be answered by the individual
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Fig. 2: Learning classifiers from OERDSs [10].

data sources (based on the mappings from the user ontology to the data source
ontologies); and assembles the answer to the original query from the answers
returned by the individual data sources (Figure 2). Once a classifier has been
learned, it can be used to classify data that is at the disposal of the user.

3 Learning Link-Based Classifiers from OERDs

We now proceed to describe our algorithm for learning classifiers from a collec-
tion of semantically heterogeneous OERDSs. We adapt the link-based iterative
algorithm introduced by Lu and Getoor [8] to learning classifiers from OERDSs
(see [13] for more details on the algorithm adaptation).

Learning link-based Näıve Bayes classifiers reduces to estimating the proba-
bilities P (cj), P (vi|cj), and P (ui|cj), for all classes cj ∈ C, for all object attribute
values vi ∈ V(OA(xi)) and for all link description values ui ∈ V(LDl(xi)) using
standard methods [9] (see [8] for an explanation of the link description).

We denote by σ(vi|cj) the frequency count of the value vi ∈ V(OA(xi)),
given the class cj ; by σ(ui|cj) the frequency count of the value ui ∈ V(LDl(xi)),
given the class cj ; and by σ(cj) the frequency count of the class cj , in the user
view. The algorithm for learning a link-based Näıve Bayes classifier from a set
of related OERDSs works as follows:

1. Select a global user cut Γ through the user ontology (AVHs). In particular,
the user cut corresponds to the set of primitive values (i.e., leaves in AVHs).

2. Apply the mappings ψk to find a cut Γk, corresponding to the user cut Γ ,
in each OERDS Dk.

3. Formulate statistical queries asking for the frequency counts σ(vi|cj), σ(ui|cj),
and σ(cj), using terms in the user cut Γ .

4. Translate these queries into queries expressed in the ontology of each OERDS
Dk, using terms in the cut Γk, and compute the local counts σk(vi|cj),
σk(ui|cj), and σk(cj) from each OERDS Dk.

5. Send the local counts to the user and add them up to compute the global
frequency counts σ(vi|cj), σ(ui|cj), and σ(cj).

6. Generate the link-based Näıve Bayes hΓ corresponding to the cut Γ based
on the global frequency counts.
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3.1 Exactness

Definition: An algorithm Ldistributed for learning from OERDSs D1, · · · ,Dp, via
the mappings {ψk}, is exact wrt its centralized counterpart Lcentralized, if the
hypothesis produced by Ldistributed is identical to that produced by Lcentralized
from the data warehouse D that is constructed by integrating the data sources
D1, · · · , Dp, according to the user view, via the same mappings {ψk}.

The exactness criterion defined above assumes that it is possible, in principle,
to create an integrated data warehouse in the centralized setting. In practice, the
data sources D1, · · · , Dp might impose access constraints on the user. These con-
straints might prohibit the user from retrieving instance data from some of the
data sources (e.g., due to restrictions on the queries that can be answered by the
data source, bandwidth limitations, or privacy considerations), while allowing
retrieval of answers to statistical queries against the data.

Note that the algorithm for learning a link-based Näıve Bayes classifier
from OERDSs using statistical queries is exact relative to the link-based Näıve
Bayes classifier obtained by executing the standard algorithm on the data ware-
house D obtained by integrating the set of OERDSs D1, · · · ,Dp (using the
same set of mappings {ψk}). This follows from the observation that σ(vi|cj) =∑k
i=1 σk(vi|cj) = σD(vi|cj), σ(ui|cj) =

∑k
i=1 σk(ui|cj) = σD(ui|cj), σ(cj) =∑k

i=1 σk(cj) = σD(cj), when there is no overlap between the distributed sources.
Note that dealing with duplication of instances between any two data sources
requires establishing correspondences between individual instances [14].

4 Experiments and Results

We evaluated our approach to learning classifiers from a set of semantically
disparate relational data sources on a subset extracted from the Cora data set
[15]. The filtering procedure of the Cora is described in [13]. We associate AVHs
with both attributes Article.Words and Article.Topic (see [13]).

Note that due to the unavailability of data sources that are already anno-
tated with meta data, we performed experiments only on the Cora data set.
To simulate the distributed setting, we randomly partitioned the Cora data set
into two subsets, such that the class distribution in each subset is similar to the
class distribution in the entire dataset. In our experiments, we used one-to-one,
manually-defined mappings between the user and the data sources ontologies2.

Futhermore, four cuts, or levels of abstraction, through the user AVH cor-
responding to the Article.Words were considered. These cuts are obtained as
follows. In each hierarchy the most abstract level, i.e. the terms corresponding
to the children of the root form Cut 1. The most detailed level, i.e. the terms
corresponding to the leaves of the trees form the Leaf Cut. Cut 2 is obtained by

2 There are several approaches to inferring mappings between ontologies from available
information [12]. Our focus here is on how to exploit ontologies and mappings, and
not the problem of coming up with the mappings.
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Level of Abstraction Accuracy Precision Recall F-Measure

Cut 1 0.86 0.80 0.47 0.51
Cut 2 0.86 0.83 0.46 0.51
Cut 3 0.89 0.86 0.62 0.69
Leaf Cut 0.89 0.84 0.61 0.68

Table 1: The classification results on the task of classifying papers into one of the
three categories: DM, ML, and NLP for all four levels of abstraction considered:
Cut 1, Cut 2, Cut 3, Leaf Cut.

replacing one node from Cut 1 by its children. Cut 3 is obtained by replacing
a subset of leaf nodes by their parent node.

We learned classifiers using terms on different cuts (levels of abstraction) in
the ontologies. Assume that a user is interested in classifying computer science
research articles into one of the three classes: DM, ML and NLP and also that
the user provides a level of abstraction corresponding to his or her understand-
ing of the domain, i.e. a level of abstraction in the AVH corresponding to the
Article.Words attribute.

The classification results for this task, for all four levels of abstraction, Cut
1, Cut 2, Cut 3, and Leaf Cut, are shown in Table 1. The performance
measures of interest were estimated by averaging the performance of the classifier
on the five runs of a cross-validation experiment. As can be seen from the table,
classifiers trained at different levels of abstraction differ in their performance
on the test data. Moving from a coarser to a finer level of abstraction does not
necessarily improve the performance of the classifier because there may not be
enough data to accurately estimate the classifier parameters. Similarly, moving
from a finer to a coarser level of abstraction does not necessarily improve the
performance since there may not be enough terms to discriminate between the
classes. Cut 3 yields the best performance among the four levels considered,
although it is an abstraction of the Leaf Cut.

Now assume that another user is interested in predicting whether the topic
of a research article is NN. This requires finding a cut through the user AVH
corresponding to Article.Topic that contains the term NN and then performing
the mappings between the user ontology and the data source ontologies.

Figure 3(a) shows the Receiver Operating Characteristic (ROC) curves on
this binary classification task using the same four levels of abstraction as above.
As can be seen from the figure, for any choice of the FPR, as we go from a coarser
to a finer level of abstraction, the link-based Näıve Bayes classifier offers a higher
TPR (Recall). The performance improvement is quite striking from Cut 1 to
Cut 2. However, the difference in performance between Cut 3 and Leaf Cut
is rather small. Unlike the previous task, on this task the ROC curve for the
Leaf Cut outperforms the ROC curves corresponding to the other three cuts.
This can be explained by the fact that the number of parameters that need to
be estimated is smaller for this second task.
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Fig. 3: Comparison of the ROC curves of the link-based classifier on the task
of predicting whether a research paper is NN for all four levels of abstraction
considered in this study: Cut 1, Cut 2, Cut 3, and Leaf Cut.

5 Summary and Discussion

We have described a general strategy for learning link-based Näıve Bayes classi-
fiers [8] from a collection of semantically disparate relational data sources. The
proposed approach exploits mappings between a user ontology and data source
ontologies to gather the necessary statistics for learning the classifiers. The re-
sulting algorithms for learning link-based classifiers from semantically disparate
relational data sources can be shown to be provably exact relative to their cen-
tralized counterparts under fairly general assumptions. The algorithm assumes a
pre-specified level of abstraction defined by the user-supplied global cut through
the user ontology. Our experiments have shown that the choice of the level of
abstraction can impact the performance of the classifier.

The problem of learning classifiers from a semantically homogeneous rela-
tional database has received much attention in the recent machine learning lit-
erature [16, 17]. There is a large body of literature on learning predictive models
from distributed data (see [18, 19] for surveys). Of particular interest in our
setting is the work of Caragea et al [7] that introduced a general strategy for
transforming a broad class of standard learning algorithms that assume in mem-
ory access to a dataset into algorithms that interact with the data source(s)
only through statistical queries or procedures that can be executed on the data
sources. A basic strategy for coping with semantically disparate data was out-
lined in [7]. However, these works assumed that data are stored in a flat table.

Some directions for future research include: exploring the effect of using dif-
ferent ontologies and mappings, the use of automated approaches to establish
mappings between ontologies [12], coping with partially specified data [20] that
inevitably results by integrating a collection of OERDSs via mappings, etc.
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