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DEFINITION

Advances in high throughput sequencing and “omics” technologies and the resulting exponential growth
in the amount of macromolecular sequence, structure, gene expression measurements, have unleashed a
transformation of biology from a data-poor science into an increasingly data-rich science. Despite these
advances, biology today, much like physics was before Newton and Leibnitz, has remained a largely
descriptive science. Machine learning [6] currently offers some of the most cost-effective tools for building
predictive models from biological data, e.g., for annotating new genomic sequences, for predicting
macromolecular function, for identifying functionally important sites in proteins, for identifying genetic
markers of diseases, and for discovering the networks of genetic interactions that orchestrate important
biological processes [3]. Advances in machine learning e.g., improved methods for learning from highly
unbalanced datasets, for learning complex structures of class labels (e.g., labels linked by directed
acyclic graphs as opposed to one of several mutually exclusive labels) from richly structured data such
as macromolecular sequences, 3-dimensional molecular structures, and reliable methods for assessing
the performance of the resulting models, are critical to the transformation of biology from a descriptive
science into a predictive science.

HISTORICAL BACKGROUND

Large scale genome sequencing efforts have resulted in the availability of hundreds of complete genome sequences.
More importantly, the GenBank repository of nucleic acid sequences is doubling in size every 18 months [4].
Similarly, structural genomics efforts have led to a corresponding increase in the number of macromolecular
(e.g., protein) structures [5]. At present, there are over a thousand databases of interest to biologists [16]. The
emergence of high-throughput “omics” techniques, e.g., for measuring the expression of thousands of genes under
different perturbations, has made possible system-wide measurements of biological variables [8]. Consequently,
discoveries in biological sciences are increasingly enabled by machine learning.

Some representative applications of machine learning in computational and systems biology include: Identifying
the protein-coding genes (including gene boundaries, intron-exon structure) from genomic DNA sequences;
Predicting the function(s) of a protein from its primary (amino acid) sequence (and when available, structure
and its interacting partners); Identifying functionally important sites (e.g., protein-protein, protein-DNA,
protein-RNA binding sites, post-translational modification sites) from the protein’s amino acid sequence and,
when available, from the protein’s structure; Classifying protein sequences (and structures) into structural
classes; Identifying functional modules (subsets of genes that function together) and genetic networks from gene
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expression data.

These applications collectively span the entire spectrum of machine learning problems including supervised
learning, unsupervised learning (or cluster analysis), and system identification. For example, protein function
prediction can be formulated as a supervised learning problem: given a dataset of protein sequences with
experimentally determined function labels, induce a classifier that correctly labels a novel protein sequence.
The problem of identifying functional modules from gene expression data can be formulated as an unsupervised
learning problem: given expression measurements of a set of genes under different conditions (e.g., perturbations,
time points), and a distance metric for measuring the similarity or distance between expression profiles of a pair
of genes, identify clusters of genes that are co-expressed (and hence are likely to be co-regulated). The problem
of constructing gene networks from gene expression data can be formulated as a system identification problem:
given expression measurements of a set of genes under different conditions (e.g., perturbations, time points), and
available background knowledge or assumptions, construct a model (e.g., a boolean network, a bayesian network)
that explains the observed gene expression measurements and predicts the effects of experimental perturbations
(e.g., gene knockouts).

SCIENTIFIC FUNDAMENTALS

Challenges presented by computational and systems biology applications have driven, and in turn benefited from,
advances in machine learning. We proceed to describe some of these developments below.

Multi-label classification: In the traditional classification problem, an instance xi, i = 1, · · · , n, is associated
with a single class label yj from a finite, disjoint set of class labels Y , j = 1, · · · , k, k = |Y | (single-label classifi-

cation problem). If the set Y has only two elements, then the problem is refered to as the binary classification

problem, otherwise, if Y has more than two elements, then it is refered to as multi-class classification problem.
However, in many biological applications, an instance xi is associated with a subset of, not necessarily disjoint,
class labels in Y (multi-label classification problem). For example, many genes and proteins are multi-functional.
Most of the existing algorithms cannot simultaneously label a gene or protein with several, not necessarily mutu-
ally exclusive functions. Each instance is then assigned to a subset of nodes in the hierarchy, yielding a hierarchical

multi-label classification problem or a structured output classification problem. The most common approach to
dealing with multi-label classification problem [7] is to transform the problem into k binary classification problems,
one for each different label yj ∈ Y , j = 1, · · · , k. The transformation consists of constructing k datasets, Dj , each
containing all instances of the original dataset, such that an instance in Dj , j = 1, · · · , k, is labeled with 1 if it has
label yj in the original dataset, and 0 otherwise. During classification, for a new unlabeled instance xtest, each
individual classifier Cj , j = 1, · · · , k, returns a prediction that xtest belongs to the class label yj or not. However,
the transformed datasets that result from this approach are highly unbalanced, typically, with the number of
positively labeled instances being significantly smaller than the number of negatively labeled instances, requiring
the use of methods that can cope with unbalanced data. Alternative evaluation metrics need to be developed for
assessing the performance of multi-label classifiers. This task is complicated by correlations among the class labels.

Learning from unbalanced data: Many of the macromolecular sequence classification problems present
the problem of learning from highly unbalanced data. For example, only a small fraction of amino acids in an
RNA-binding protein binds to RNAs. Classifiers that are trained to optimize accuracy generally perform rather
poorly on the minority class. Hence, if accurate classification of instances from the minority class is important
(or equivalently, the false positives and false negatives have unequal costs or risks associated with them), it is
necessary to change the distribution of positive and negative instances during training by randomly selecting
a subset of the training data for the majority class, or alternatively, assigning different weights to positive and
negative samples (and learn from the resulting weighted samples). More recently, ensemble classifiers [12] have
been shown to improve the performance of sequence classifiers on unbalanced datasets. Unbalanced datasets
also complicate both the training and the assessment of the predictive performance of classifiers. Accuracy is
not a useful performance measure in such scenarios. Indeed, no single performance measure provides a complete
picture of the classifier’s performance. Hence, it is much more useful to examine ROC (Receiver Operating
Characteristic) or precision-recall curves [3]. Of particular interest are methods that can directly optimize
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alternative performance measures that take into account the unbalanced nature of the dataset and user-specified
tradeoff between false positive and false negative rates.

Data representation: Many computational and systems biology applications of machine learning present
challenges in data representation. Consider for example, the problem of identifying functionally important sites
(e.g., RNA-binding residues) from amino acid sequences. In this case, given an amino acid sequence, the classifier
needs to assign a binary label (1 for an RNA-binding residue and 0 for a non RNA-binding residue) to each
letter of the sequence. To solve this problem using standard machine learning algorithms that work with a fixed
number of input features, it is fairly common to use a sliding window approach [11] to generate a collection
of fixed length windows, where each window corresponds to the target amino acid and an equal number of
its sequence neighbors on each side. The classifier is trained to label the target residue. Similarly, identifying
binding sites from a 3-dimensional structure of the protein requires transforming the problem into one that can
be handled by a traditional machine learning method. Such transformations, while they allow the use of existing
machine learning methods on macromolecular sequence and structure labeling problems, complicate the task of
assessing the performance of the resulting classifier (see below).

Performance Assessment: Standard approaches to assessing the performance of classifiers rely on k-fold
cross-validation wherein a dataset is partitioned into k disjoint subsets (folds). The performance measure of
interest is estimated by averaging the measured performance of the classifier on k runs of a cross-validation
experiment, each using a different choice of the k− 1 subsets for training and the remaining subset for testing the
classifier. The fixed length window representation described above complicates this procedure on macromolecular
sequence labeling problems: The training and test sets obtained by random partitioning of the dataset of labeled
windows can contain windows that originate from the same sequence, thereby violating a critical requirement
for cross-validation, namely, that the training and test data be disjoint. The resulting overlap between training
and test data can yield overly optimistic estimates of performance of the classifier. A better alternative is to
perform sequence-based (as opposed to window-based) cross-validation by partitioning the set of sequences
(instead of windows) into disjoint folds. This procedure guarantees that training and test sets are indeed disjoint
[9]. Obtaining realistic estimates of performance in sequence classification and sequence labeling problems also
requires the use of non-redundant datasets [14].

Learning from sparse datasets: In gene expression datasets the number of genes is typically in the hundreds
or thousands whereas the number of measurements (conditions, perturbations) is typically fewer than ten. This
presents significant challenges in infering genetic network models from gene expression data because the number
of variables (genes) far exceeds the number of observations or data samples. Approaches to dealing with this
challenge require reducing the effective number of variables via variable selection [17] or abstraction i.e., by
grouping variables into clusters that behave similarly under the observed conditions. Another approach to dealing
with sparsity of data in such settings is to incorporate information from multiple datasets [18].

KEY APPLICATIONS*

Protein function prediction: Proteins are the principal catalytic agents, structural elements, signal transmit-
ters, transporters and molecular machines in cells. Understanding protein function is critical to understanding
diseases and ultimately in designing new drugs. Until recently, the primary source of information about protein
function has come from biochemical, structural, or genetic experiments on individual proteins. However, with
the rapid increase in number of genome sequences, and the corresponding growth in the number of protein
sequences, the numbers of experimentally determined structures and functional annotations has significantly
lagged the number of protein sequences. With the availability of datasets of protein sequences with experi-
mentally determined functions, there is increasing use of sequence or structural homology based transfer of
annotation from already annotated sequences to new protein sequences. However, the effectiveness of such
homology-based methods drops dramatically when the sequence similarity between the target sequence and the
reference sequence falls below 30%. In many instances, the function of a protein is determined by conserved
local sequence sequence motifs. However, approaches that assign function to a protein based on the presence
of a single motif (the so-called characteristic motif) fail to take advantage of multiple sequence motifs that are
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correlated with critical structural features (e.g., binding pockets) that play a critical role in protein function.
Against this background, machine learning methods offer an attractive approach to training classifiers to assign
putative functions to protein sequences. Machine learning methods have been applied, with varying degrees
of success, to the problem of protein function prediction. Several studies have demonstrated that machine
learning methods, used in conjunction with traditional sequence or structural homology based techniques and
sequence motif-based methods outperform the latter in terms of accuracy of function prediction (based on
cross-validation experiments). However, the efficacy of alternative approaches in genome-wide prediction of
functions of protein-coding sequences from newly sequenced genomes remains to be established. There is also
significant room for improving current methods for protein function prediction.

Identification of potential functional annotation errors in genes and proteins: As noted above, to
close the sequence-function gap, there is an increasing reliance on automated methods in large-scale genome-wide
annotation efforts. Such efforts often rely on transfer of annotations from previously annotated proteins, based on
sequence or structural similarity. Consequently, they are susceptible to several sources of error including errors in
the original annotations from which new annotations are inferred, errors in the algorithms, bugs in the software
used to process the data, and clerical errors on the part of human curators. The effect of such errors can be
magnified because they can propagate from one set of annotated sequences to another. Because of the increasing
reliance of biologists on reliable functional annotations for formulation of hypotheses, design of experiments, and
interpretation of results, incorrect annotations can lead to wasted effort and erroneous conclusions. Hence, there
is an urgent need for computational methods for checking consistency of such annotations against independent
sources of evidence and detecting potential annotation errors. A recent study has demonstrated the usefulness
of machine learning methods to identify and correct potential annotation errors [1].

Identification of functionally important sites in proteins: Protein-protein, protein-DNA, and protein-
RNA interactions play a pivotal role in protein function. Reliable identification of such interaction sites from
protein sequences has broad applications ranging from rational drug design to the analysis of metabolic and
signal transduction networks. Experimental detection of interaction sites must come from determination of the
structure of protein-protein, protein-DNA and protein-RNA complexes. However, experimental determination of
such complexes lags far behind the number of known protein sequences. Hence, there is a need for development
of reliable computational methods for identifying functionally important sites from a protein sequence (and when
available, its structure, but not the complex). This problem can be formulated as a sequence (or structure)
labeling problem. Several groups have developed and applied, with varying degrees of success, machine learning
methods for identification of functionally important sites in proteins (see [21, 13, 22] for some examples).
However, there is significant room for improving such methods.

Discovery and analysis of gene and protein networks: Understanding how the parts of biological systems
(e.g., genes, proteins, metabolites) work together to form dynamic functional units, e.g., how genetic interactions
and environmental factors orchestrate development, aging, and response to disease, is one of the major foci of the
rapidly emerging field of systems biology [8]. Some of the key challenges include the following: uncovering the
biophysical basis and essential macromolecular sequence and structural features of macromolecular interactions;
comprehending how temporal and spatial clusters of genes, proteins, and signaling agents correspond to genetic,
developmental and regulatory networks [10]; discovering topological and other characteristics of these networks
[19]; and explaining the emergence of systems-level properties of networks from the interactions among their parts.
Machine learning methods have been developed and applied, with varying degrees of success, in learning predictive
models including boolean networks [20] and bayesian networks [15] from gene expression data. However, there is
significant room for improving the accuracy and robustness of such algorithms by taking advantage of multiple
types of data and by using active learning.

FUTURE DIRECTIONS

Although many machine learning algorithms have had significant success in computational biology, several
challenges remain. These include the development of: efficient algorithms for learning predictive models from
distributed data; cumulative learning algorithms that can efficiently update a learned model to accomodate
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changes in the underlying data used to train the model; effective methods for learning from sparse, noisy, high-
dimensional data; and effective approaches to make use of the large amounts of unlabeled or partially labeled
data; algorithms for learning predictive models from disparate types of data: macromolecular sequence, structure,
expression, interaction, and dynamics; and algorithms that leverage optimal experiment design with active learning
in settings where data is expensive to obtain.

CROSS REFERENCE*

Biostatistics and data analysis; Biological Networks; Classification; Clustering; Graph Mining, Data Mining.
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