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Abstract

Identifying functionally important sites from biological
sequences, formulated as a biological sequence labeling
problem, has broad applications ranging from rational drug
design to the analysis of metabolic and signal transduction
networks. In this paper, we present an approach to biolog-
ical sequence labeling that takes into account the global
similarity between biological sequences. Our approach
combines unsupervised and supervised learning techniques.
Given a set of sequences and a similarity measure defined
on pairs of sequences, we learn a mixture of experts model
by using spectral clustering to learn the hierarchical struc-
ture of the model and by using bayesian approaches to com-
bine the predictions of the experts. We evaluate our ap-
proach on two important biological sequence labeling prob-
lems: RNA-protein and DNA-protein interface prediction
problems. The results of our experiments show that global
sequence similarity can be exploited to improve the per-
formance of classifiers trained to label biological sequence
data.

1. Introduction
Advances in high throughput data acquisition technolo-

gies have resulted in rapid increase in the amount of data
in biological sciences. For example, progress on sequenc-
ing technologies has resulted in the release of hundreds of
complete genome sequences. With the exponentially grow-
ing number of biological sequences from genome projects
and high-throughput experimental studies, sequence anno-
tations do not keep pace with sequencing. The wet-lab ex-
periments to determine the annotations (e.g., functional site
annotations) are still difficult and time consuming. Hence,
there is an urgent need for development of computational

tools that can accurately annotate biological data.
Machine learning methods currently offer one of the

most cost-effective approaches to construction of predictive
models in applications where representative training data
are available. The supervised learning problem [10] can
be formally defined as follows: Given an independent and
identically distributed (iid) dataset D of labeled instances
(xi, yi)i=1,···,n, xi ∈ Rd and yi ∈ Y , where Y is the set of
all possible class labels, a hypothesis class H representing
the set of all possible hypotheses that can be learned, and a
performance criterion P , the learning algorithm L outputs a
hypothesis h ∈ H (i.e., a classifier) that optimizes P . Dur-
ing classification, the task of the classifier h is to accurately
assign a new instance xtest to a class label y ∈ Y .

Most biological data involve sequence data, e.g., nucleic
or amino acid sequences. Biological sequence labeling is
an example of supervised learning problem. The labeled in-
stances (xi,yi)i=1,···,n, are pairs of input/output sequences,
xi = (xi,1xi,2 · · ·xi,m) and yi = (yi,1yi,2 · · · yi,m), where
yi,j in the output sequence is the class label for xi,j in the
input (or observation) sequence, j = 1, · · · ,m. Given a
new input sequence xtest, the task of the classifier h ∈ H is
to predict a class label for each element that appears at each
position along the sequence.

A large volume of work has been carried out to label
biological sequence data. Terribilini et al. [18] trained
Naive Bayes classifiers to identify RNA-protein interface
residues in a protein sequence. Qian and Sejnowski [16]
trained Neural Networks to predict protein secondary struc-
ture, i.e., classifying each residue in a protein sequence into
one of the three classes: helix (H), strand (E) or coil (C).
Caragea et al. [5] and Kim et al. [12] used Support Vec-
tor Machines to identify residues in a protein sequence that
undergo post-translational modifications.

Typically, to solve the biological sequence labeling prob-



lem using standard machine learning algorithms, each el-
ement in a sequence is encoded based on a local, fixed-
length window corresponding to the target element and its
sequence context (an equal number of its sequence neigh-
bors on each side) [9]. The classifier is trained to label the
target element. This procedure can produce reliable results,
especially if we suspect that there exists a local sequence
pattern around each functional site.

However, there are cases where the local amino acid dis-
tribution around functionally important sites in a given set
of proteins is highly variable. For example, in identify-
ing RNA-protein and DNA-protein interface residues from
protein sequences, there is typically no consensus sequence
around each site.

Machine learning classifiers designed to distinguish
“positive” examples from the “negative” ones, must “learn”
to do this by training on characteristics associated with
known “positive” and “negative” examples. When the fea-
tures that distinguish them are complex, training more spe-
cific classifiers to focus on particular subsets of the data is
essential. The greater the commonality among members of
a subset, the more likely it is that a machine learning ap-
proach will be successful in identifying the predictive char-
acteristics.

Against this background, we hypothesize that classifiers
trained to label biological sequence data can be improved by
taking into account the global sequence similarity between
the protein sequences in addition to the local features ex-
tracted around each site. The intuition behind this hypoth-
esis is that the more similar two sequences are, the higher
the correlation between their functional sites for a particular
problem. Therefore, we propose to improve the biological
sequence labeling problem by using a machine learning ap-
proach, that is, a mixture of experts model that considers the
global similarity between protein sequences when building
the model and making the predictions.

We evaluate our approach to learning a mixture of ex-
perts model on two biological sequence labeling tasks:
RNA- and DNA-protein interface prediction tasks and
demonstrate that taking into account global sequence simi-
larity can improve the performance of the classifiers trained
to label biological sequence data.

The rest of the paper is organized as follows: In Section
2, we review two related approaches to learning multiple
models. In Section 3, we describe our approach to learning
a mixture of experts model. In Section 4, we briefly intro-
duce the machine learning algorithms applied in this study.
In Section 5, we describe the data sets construction and pa-
rameter setting. In Section 6, we present experiments and
results on the RNA- and DNA-protein interface prediction
tasks. We conclude our study in Section 7 and highlight
some directions for future work.

2. Related Work
2.1. Hierarchical Mixture of Experts

The Hierarchical Mixture of Experts model (HME)
was first proposed by Jordan and Jacobs (1994) [11]
to solve nonlinear classification and regression problems
while learning linear models: the input space is divided into
a set of nested regions and simple (e.g., linear) models are
fit to the data that fall in these regions. Hence, instead of us-
ing a “hard” partitioning of the data, the authors use a “soft”
partitioning, i.e., the data is allowed to simultaneously lie in
more than one region.

The HME has a tree-structured architecture known apri-
ori. It consists of gating networks that sit at the internal
nodes and expert networks that sit at the leaf nodes of the
tree. The expert networks output class distributions for each
input x, while the gating networks learn how to combine the
predictions of the experts up to the root of the tree which
returns the final prediction. The parameters of the gating
networks are learned using Expectation Maximization al-
gorithm [6]. The gating and the expert networks are gener-
alized linear models.

2.2. Ensemble of Classifiers
An ensemble of classifiers is a collection of independent

classifiers, each classifier being trained on a subsample of
the training data [8]. The prediction of the ensemble of clas-
sifiers is computed from the predictions of the individual
classifiers using majority voting. An example is misclassi-
fied by the ensemble if a majority of the classifiers misclas-
sifies it. When the errors made by the individual classifiers
are uncorrelated, the predictions of the ensemble of classi-
fiers are often more reliable.

3. Learning Mixture of Experts Models
Here we present our approach to learning a mixture of

experts model that takes into account the global similarity
between biological sequences. Unlike the HME model [11],
we assume that the structure of our model is not known
apriori. Hence, to learn its hierarchical structure, we use
spectral clustering techniques. The leaf nodes consist of ex-
pert classifiers, while the gating nodes combine the output
of each classifier to the root of the tree which makes the fi-
nal prediction. The gating nodes combine the predictions
of the expert classifiers based on an estimate of the cluster
membership of a test protein sequence. Similar to Jordan
and Jacobs [11], we considered a “soft” partitioning of the
data, i.e., each sequence in the training set simultaneously
lies in all clusters of the hierarchical structure with a differ-
ent weight in each cluster.

The combination scheme of the predictions of the expert
classifiers and the “soft” partitioning of the data that con-
siders the global sequence similarity differentiate our model
from an ensemble of classifiers model.



3.1. Learning the Structure of the Model

To learn the hierarchical structure of our model, we use
hierarchical clustering, an unsupervised learning technique
[10] that attempts to uncover the hidden structure that exists
in the unlabeled data. Given a data set D of unlabeled pro-
tein sequences (xi)i=1,...,n, and a similarity measure S de-
fined on pairs of sequences, the clustering algorithm C par-
titions the data into dissimilar clusters of similar sequences
producing a tree-structured architecture (see Figure 1).

We first compute the pairwise similarity matrix Wn×n

for the protein sequences in the training set based on a com-
mon global sequence alignment method. Second, using this
similarity matrix, we apply 2-way spectral clustering algo-
rithm, described in the next subsection, to recursively bipar-
tition the training set of protein sequences until a splitting
criterion is met.

The output of the algorithm is a hierarchical clustering
of the protein sequences, i.e., a tree T such that each node
(cluster) consists of a subset of sequences. The root node is
the largest cluster containing all the protein sequences in the
training set. Once a cluster is partitioned into its two sub-
clusters, it becomes their parent in the resulting tree struc-
ture. We store all the intermediate clusters computed by the
algorithm. If the number of sequences at a given cluster
falls below some percentage of the total sequences in the
training set, then the node becomes a leaf and thus is not
further partitioned (we used 10% in our experiments).

Figure 1 shows the tree structure produced by the 2-way
spectral clustering algorithm when applied to a set of 147
RNA-protein sequences. The similarity matrix is computed
based on the Needleman-Wunsch global alignment algo-
rithm. In the figure, to keep the tree smaller, we stopped
bipartitioning a node when the number of sequences at a
given cluster falls below 30% of the total sequences in the
training set.

3.2. 2-Way Spectral Clustering

Spectral clustering has been successfully applied in
many domains, including image segmentation [17], docu-
ment clustering [7], grouping related proteins according to
their structural SCOP classification [15].

Spectral clustering falls within the category of graph par-
titioning algorithms that partition the data into disjoint clus-
ters by exploiting the eigenstructure of a similarity matrix.
In general, to find an optimal graph partitioning is NP com-
plete. Shi and Malik [17] proposed an approximate spec-
tral clustering algorithm that optimizes the normalized cut
(NCut) objective function. It is a divisive, hierarchical clus-
tering algorithm that recursively bi-partitions the graph until
some criterion is reached, producing a tree structure.

Let X = {x1,x2, · · · ,xn} be the set of sequences to
be partitioned and let S be a similarity function between
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Figure 1. The resulting hierarchical structure
produced by spectral clustering when ap-
plied to a set of 147 RNA-protein sequences.
The number in each node indicates the num-
ber of protein sequences belonging to it. The
Needleman-Wunch global alignment score
was used as a pairwise similarity measure
during the clustering process.

pairs of sequences. The 2-way spectral clustering algorithm
consists of the following steps:

1. Let Wn×n = [S(i, j)] be the symmetrical matrix con-
taining the similarity score for each pair of sequences.

2. Let Dn×n be the degree matrix of W, i.e., a diagonal
matrix such that Dii =

∑
j S(i, j).

3. Solve the eigenvalue system (D −W)x = λDx for
the eigenvector corresponding to the second smallest
eigenvalue and use it to bipartition the graph.

4. Recursively bipartition each subgraph obtained at Step
3. if necessary.

Note that the quality of the clusters found by the 2-way
spectral clustering algorithm depends heavily on the choice
of the similarity function S.

3.3. Estimating the Parameters of the
Model

Following the approach taken by Jordan and Jacobs [11],
we make use of the “soft” partitioning of the biological se-
quence data. Thus, having the hierarchical clustering T
stored, we devise a procedure that allows each sequence in
the training set to simultaneously lie in all clusters, with a
different weigth in each cluster.

For each sequence xi, i = 1, · · · , n in the training set D,
we compute its cluster membership as follows (Figure 2):
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Figure 2. Estimating cluster membership of a
sequence.

1. Find the K closest sequences to xi at the parent node
based on the similarity function used to construct the
hierarchical clustering T (in our experiments we used
K equal to 20% of the sequences at the parent node).

2. Let K0 out of K sequences go to the left child node,
and K1 out of K go to the right child node.

3. The estimated probability of xi for being in child node
j is computed as p(xi ∈ Vj |xi ∈ par(Vj)) = Kj/K,
where j = 0, 1.

We recursively place the sequence xi in all the nodes of
T with different weights, starting from the root, based on
its estimated cluster membership computed above. Thus,
the sequence weight at the root is 1 (all the sequences in the
training set lie at the root of the tree), and the weight at any
other node in the tree is the product of the sequence weights
on the path from the root to that node.

Let V l
1 , V l

2 , · · · , V l
M be the leaf nodes and

V g
1 , V g

2 , · · · , V g
N be the internal or gating nodes in the

hierarchical clustering T . During learning, we train either
a collection of M Naı̈ve Bayes classifiers or a collection
of M Logistic Regression classifiers, one classifier at each
leaf node V l

k , k = 1, · · · ,M . Naı̈ve Bayes and Logistic
Regression are briefly described in the next section.

To solve the biological sequence labeling problem, one
approach is to predict each element xi,j in the sequence
xi independently, i.e., to assume that the observation-label
pairs (xi,j , yi,j)j=1,m are independent of each other (the la-
bel independence assumption). However, xi,j may not con-
tain all the information necessary to predict yi,j . Hence,
it is fairly common to encode each element xi,j in the se-
quence xi based on a local, fixed-length window corre-
sponding to the target element and its sequence context
(an equal number of its sequence neighbors on each side)
x′i,j = xi,j−t, · · · , xi,j , · · · , xi,j+t. The classifier is trained
to label the target element xi,j [9].

During classification, given a test sequence xtest, we ex-
tract the local windows corresponding to its elements. Each

classifier at the leaf nodes V l
k returns the class membership

for each window in the test sequence,

pV l
k
(ytest,j = y|x′test,j ,xtest), for all y ∈ Y

The gating nodes V g
k , k = 1, · · · , N in the hierarchical clus-

tering T combine the predictions of the classifiers to the
root node that makes the final prediction. Thus, each gating
node combines the predictions from its child nodes (which
can be leaf nodes or descendent gating nodes) using the for-
mula:

pV g
k
(y|x′test,j ,xtest) =∑

Vi∈child(V g
k

)

pVi(y|x′test,j ,xtest)pVi(xtest ∈ Vi|xtest ∈ V g
k )

Finally, the window x′test,j is assigned to the class y that
maximizes the posterior probability from the root gating
node, Vroot:

y = arg max
y∈Y

pVroot(y|x′test,j ,xtest)

4. Machine Learning Classifiers
4.1. Näıve Bayes

Naı̈ve Bayes (NB) [13] is a supervised learning algo-
rithm that belongs to the class of generative models, in
which the probabilities p(x|y) and p(y) of the input x and
the class label y are estimated from the training data us-
ing maximum likelyhood estimates. Typically, the input
x is high-dimensional, represented as a set of features (at-
tributes), x = (x1, x2, · · · , xd), making it impossible to es-
timate p(x|y) for large values of d. However, the Naı̈ve
Bayes classifier makes the assumption that the features are
conditionally independent given the class:

p(x1, x2, . . . , xd|y) =
∏d

i=1 p(xi|y)

Therefore, training a Naı̈ve Bayes classifier reduces to esti-
mating probabilities p(xi|y), i = 1, · · · , d, and p(y), from
the training data, for all class labels y.

During classification, Bayes Rule is applied to compute
p(y|xtest):

p(y|xtest) =
p(xtest|y)p(y)

p(xtest)

The class label with the highest posterior probability is as-
signed to the new input xtest.

4.2. Logistic Regression

Logistic Regression (LR) [14] is a supervised learning
algorithm that belongs to the class of discriminative models.
Here, we consider the case of binary classification, where



the set of class labels Y = {0, 1}. Logistic Regression di-
rectly calculates the posterior probability p(y|x) and makes
the predictions by threshoding p(y|x). It does not make any
assumptions regarding the conditional independence of the
features and models the conditional probability of the class
label y given the input x as follows:

p(y = 1|x;β, θ) =
1

1 + e(−βT x−θ)

where [β, θ] are the parameters of the model that can be
estimated either by maximizing the conditional likelihood
on the training data or by minimizing the loss function.

During classification, Logistic Regression predicts a new
input xtest as 1 if and only if

βT xtest + θ > 0

5. Data Sets and Parameter Settings
We used two datasets to perform experiments: RNA-

protein and DNA-protein interface data sets. RNA- and
DNA-protein interactions play a pivotal role in protein func-
tion. Reliable identification of such interaction sites from
protein sequences has broad applications ranging from ra-
tional drug design to the analysis of metabolic and signal
transduction networks.

The RNA- and DNA-protein interface data sets consist
of RNA- and DNA-binding protein sequences, respectively,
extracted from structures in the Protein Data Bank (PDB)
[3]. We downloaded all the protein structures of known
RNA- and DNA-protein complexes from PDB solved by
X-ray crystallography and having X-ray resolution between
0 and 3.5Å. As of May 2008, the number of RNA-protein
complexes was 435 and DNA-protein complexes was 1259.
A residue was identified as interface residue using Entangle
with the default parameters [1].

Furthermore, to remove redundancy in each data
set, we used BlastClust, a toolkit that clusters se-
quences with statistically significant matches, available at
http://toolkit.tuebingen.mpg.de/blastclust. In constructing
our non-redundant sequence data sets, we applied various
identity cutoffs, starting from 30% and ending at 90% in
steps of 10. For example, in the 30% identity cutoff se-
quence data set, two sequences were pairwise matched if
they were 30% or more identical over an area covering 90%
of the length of each sequence. We randomly selected a se-
quence from each cluster returned by BlastClust. Thus, the
resulting non-redundant RNA-protein sequence data set for
30% identity cutoff has 180 protein sequences. The total
number of amino acid residues is 33,235.

We represented residues identified as interface residues
in a protein sequence as positive instances (+) and those
not identified as interface residues as negative instances (-).
As mentioned before, we encoded each residue by a local

Data Sets Number of Number of Number of
Sequences + Instances - Instances

RNA-prot 30% 180 5398 27837
RNA-prot 60% 215 6689 32073
RNA-prot 90% 246 7798 34675
DNA-prot 30% 257 5326 53494
DNA-prot 60% 289 5974 58031
DNA-prot 90% 317 6551 60877

Table 1. Number of sequences as well as
number of positive (+) and negative (-) in-
stances in the non-redundant RNA- and DNA-
protein sequence data sets for 30%, 60%, and
90% identity cutoffs.

window of fixed length, winLength = 21, corresponding
to the target residue and ten neighboring residues on each
side.

Table 1 shows the number of sequences as well as the
number of positive (+) and negative (-) instances in the non-
redundant RNA- and DNA-protein sequence data sets for
30%, 60%, and 90% identity cutoffs.

Interesting to note is that very many sequences in both
RNA- and DNA-protein interface data sets are 90% or more
identical over an area covering 90% of the length of each
sequence and are removed from the data sets, e.g., in the
DNA-protein interface data set, the number of sequences
reduces from 1259 to 317 sequences in the 90% identity
cutoff data set. On the other hand, the difference in the
number of sequences in the non-redundant datasets is very
small (Table 1).

6. Experiments and Results

6.1. Performance Evaluation
To assess the performance of classifiers in this study,

we report the following measures: Precision, Recall,
Correlation Coefficient (CC), and F-Measure (FM). If we
denote true positives, false negatives, false positives, and
true negatives by TP , FN , FP , and TN respectively, then
these measures can be defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

CC =
TP · TN − FP · FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)

FM =
2× Precision× Recall
Precision + Recall
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Figure 3. Precision-Recall curves for Naive Bayes and Mixture of Naive Bayes models as well as
Logistic Regression and Mixture of Logistic Regression models on the non-redundant RNA- and
DNA-protein sequence data sets at 30% identity cutoff. The hierarchical structures of the mixture of
experts models are constructed based on global sequence similarity.

To obtain the estimates for TP , FN , FP and TN ,
we performed 10-fold sequence-based cross-validation [4]
wherein the set of sequences is partitioned into 10 disjoint
subsets (folds). At each run of a cross-validation exper-
iment, 9 subsets are used for training and the remaining
one is used for testing the classifier. The values for TP ,
FN , FP and TN are obtained using the default threshold
θ = 0.5, i.e., an instance is classified as positive if the prob-
ability of being in the positive class returned by the classifier
is greater than or equal to 0.5, and as negative otherwise.

With any classifier, it is possible to tradeoff the Recall
against Precision. Hence, it is more informative to compare
the Precision-Recall curves which show the tradeoff over
their entire range of possible values than to compare the
performance of the classifiers for a particular choice of the
tradeoff.

To evaluate how good a classifier is at discriminating be-
tween the positive and negative examples, we also report
the Area Under the Receiver Operating Characteristic Curve
(AUC) on the test set, which represents the probability of
correct classification [2].

6.2. Experimental Design and Results

The goal of this study is to evaluate whether the per-
formance of classifiers trained to label biological sequence
data can be improved by taking into account global se-
quence similarity between the protein sequences in the data
set in addition to the local features extracted around each
residue. For both RNA- and DNA-protein interface pre-
diction tasks, we compared two standard machine learn-
ing models, Naı̈ve Bayes (NB) and Logistic Regression
(LR), with mixture of experts models that have a hier-
archical structure constructed using 2-way spectral clus-
tering based on various similarity functions. The mix-
ture of experts models consist of NB and LR models at
the leaves, respectively. Our implementation is built on
Weka, an open source machine learning software available
at http://www.cs.waikato.ac.nz/ml/weka/.

In our first set of experiments, we computed the entries
in the similarity matrix W by applying the Needleman-
Wunsch global alignment algorithm on each pair of se-
quences. The Blosum62 substitution matrix was used for
costs. The resulting entries in the matrix W are normalized
and scaled so that each value is between 0 and 1.

In Figure 3 we compare the Precision-Recall curves for
Naı̈ve Bayes and mixture of Naı̈ve Bayes models as well
as Logistic Regression and mixture of Logistic Regression
models on both RNA- and DNA-protein interface predic-
tion tasks, where the hierarchical structure of the mixture of
experts models is constructed by taking into account global
sequence similarity. As illustrated in the figure, for both
prediction tasks, the Precision-Recall curves for the mixture
of experts models dominate the Precision-Recall curves of
NB and LR models, that is, for any choice of Precision, the
mixture of experts models offer a higher Recall than NB and
LR. While this is true for any identity cutoff for both RNA-
and DNA-protein sequence data sets, in Figure 3 we choose
to show results only for 30% identity cutoff due to space
constraints. The curves demonstrate that even for a very
stringent cutoff, the mixture of experts that captures global
similarity between sequences in the data set outperform the
other models.

In Table 2, we also show the classification results after
evaluating the baseline models, NB and LR, and the mix-
ture of experts models with NB and LR at the leaves, ME-
NB-global and ME-LR-global, respectively, on the RNA-
and DNA-protein sequence data sets for two identity cut-
offs: 30% and 90%. The values in the tables are obtained
using the default threshold θ = 0.5. Again, it can be seen
that the mixture of experts models that capture the global
sequence similarity outperform the baseline models.

In our second set of experiments, to verify that in-
deed global sequence similarity is instrumental in improv-
ing the performance of classifiers, and that the improve-
ment does not come from the more sophisticated structure
of the model, we computed the entries in the similarity ma-



RNA-protein 30% RNA-protein 90%
Classifier Precision Recall CC FM AUC Precision Recall CC FM AUC
NB 0.58 0.25 0.31 0.35 0.75 0.58 0.30 0.33 0.40 0.77
ME-NB-global 0.61 0.27 0.34 0.38 0.77 0.61 0.32 0.36 0.42 0.78
ME-NB-local 0.62 0.25 0.33 0.35 0.76 0.61 0.30 0.34 0.40 0.77
ME-NB-random 0.59 0.24 0.31 0.35 0.75 0.59 0.30 0.33 0.40 0.77
LR 0.62 0.18 0.28 0.29 0.76 0.63 0.23 0.31 0.34 0.77
ME-LR-global 0.60 0.23 0.31 0.34 0.77 0.61 0.27 0.33 0.38 0.78

Classifier DNA-protein 30% DNA-protein 90%
Precision Recall CC FM AUC Precision Recall CC FM AUC

NB 0.59 0.05 0.16 0.10 0.75 0.56 0.07 0.18 0.13 0.75
ME-NB-global 0.62 0.12 0.25 0.20 0.77 0.65 0.15 0.29 0.25 0.78
ME-NB-local 0.65 0.06 0.18 0.12 0.76 0.64 0.08 0.21 0.15 0.76
ME-NB-random 0.58 0.05 0.15 0.09 0.75 0.56 0.07 0.18 0.13 0.75
LR 0.57 0.07 0.18 0.12 0.79 0.57 0.08 0.18 0.14 0.79
ME-LR-global 0.57 0.14 0.26 0.23 0.80 0.63 0.17 0.29 0.26 0.81

Table 2. Experimental results with Naive Bayes (NB) and Logistic Regression (LR) models, and Mix-
ture of Experts (ME) models on the non-redundant RNA- and DNA-protein sequence data sets, where
the identity cutoffs are 30% and 90%. The results are shown for default threshold θ = 0.5. ME-NB-
global and ME-LR-global use NB and LR at the leaves and exploits the global sequence similarity to
construct the hierarchical structure. ME-NB-local exploits the local sequence similarity to construct
the hierarchical structure. ME-NB-random randomizes the global similarity matrix and constructs
the hierarchical structure based on the randomized matrix.

trix W by applying Smith-Waterman local alignment al-
gorithm with Blosum62, thus taking into account local se-
quence similarity (the matrix W is normalized and scaled
as before). We also randomize the global similarity ma-
trix computed previously and use this randomized matrix
to construct the hierarchical structure of the mixture of ex-
perts models. The model based on the randomized matrix
is similar to an ensemble of classifiers (see Section 2).

In Table 2 we compare the performance of Naı̈ve Bayes
(NB) and mixture of Naı̈ve Bayes models using global (ME-
NB-global) and local (ME-NB-local) sequence similarities,
as well as a random (ME-NB-random) sequence similarity
for the default threshold θ = 0.5. The results of our ex-
periments show that the mixture of experts models that cap-
ture global sequence similarity outperform the other mod-
els in terms of a majority of standard measures for com-
paring the performance of classifiers (the results are sim-
ilar for the mixture of Logistic Regression models, data
not shown). For example, for 30% identity cutoff, Corre-
lation Coefficient increases from 0.33 (local similarity) to
0.34 (global similarity) on the RNA-protein data set, and
from 0.18 (local similarity) to 0.25 (global similarity) on
the DNA-protein data set. Hence, this and the previous re-
sults demonstrate that global similarity is instrumental in
improving the performance of classifiers trained to label bi-

ological sequence data.
In our third set of experiments, we evaluated the effect

of the identity cutoff to construct the non-redundant data
sets on the Correlation Coefficient and F-Measure. Thus,
we started from 30% and ended at 90% identity cutoff
and recorded the values of Correlation Coefficient and F-
Measure for NB and mixture of NB that capture global se-
quence similarity (Figure 4). Interesting to note is that even
at 30% identity cutoff, a very stringent cutoff, the difference
in the Correlation Coefficient and F-Measure is significant,
for both RNA- and DNA-protein data sets, showing that the
mixture of experts models that capture global sequence sim-
ilarity indeed improve the performance of classifiers trained
to label biological sequence data.

7. Discussion and Conclusions
Analyzing newly discovered proteins and detecting func-

tionally important sites in protein sequences has broad ap-
plications in biology, e.g., rational drug design. Computa-
tional tools to do that are of particular importance because
protein structures for newly sequenced proteins are usually
unavailable in the public domains.

An approach is to exploit the idea that the more similar
two sequences are, the higher the correlation between their
functional sites. Hence, when two sequences are highly sim-
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Figure 4. Comparison of Correlation Coefficient and F-Measure for Naive Bayes and Mixture of Naive
Bayes models that capture global sequence similarity on non-redundant RNA- and DNA-protein data
sets constructed using various identity cutoffs, starting from 30% and ending at 90% in steps of 10.

ilar, the predictions of their functional sites become trivial
using homology modeling, i.e., sequence alignment. How-
ever, this approach fails to identify functional sites if the
sequences are non-homologous, as is the case with our non-
redundant datasets. Therefore, it is valuable to develop pre-
diction methods that can be successfully applied to non-
redundant sequence data sets. Standard machine learning
classifiers were trained to label biological sequence data us-
ing local features around each residue in a sequence.

In this work we sought to improve the performance of
classifiers that make predictions on residues in protein se-
quences by taking into account the global similarity be-
tween the protein sequences in the data set in addition to the
local features around each residue. We evaluated mixture of
experts models that consider the global similarity between
protein sequences when building the model and making the
predictions on the RNA- and DNA-protein interface pre-
diction tasks. The results of our experiments show that in-
deed global sequence similarity can be exploited to improve
the performance of classifiers trained to label biological se-
quence data.

As the quality of the clustering obtained using spectral
clustering depends heavily on the similarity function, future
work will include further analysis of other various similarity
functions.
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