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Abstract—Machine learning approaches offer some of the most
cost-effective approaches to building predictive models (e.g., clas-
sifiers) in a broad range of applications in computational biology.
Comparing the effectiveness of different algorithms requires
reliable procedures for accurately assessing the performance (e.g.,
accuracy, sensitivity, and specificity) of the resulting predictive
classifiers. The difficulty of this task is compounded by the use
of different data selection and evaluation procedures and in
some cases, even different definitions for the same performance
measures. We explore the problem of assessing the performance
of predictive classifiers trained on macromolecular sequence data,
with an emphasis on cross-validation and data selection meth-
ods. Specifically, we compare sequence-based and window-based
cross-validation procedures on three sequence-based prediction
tasks: identification of glycosylation sites, RNA-Protein interface
residues, and Protein-Protein interface residues from amino acid
sequence. Our experiments with two representative classifiers
(Naive Bayes and Support Vector Machine) show that sequence-
based and windows-based cross-validation procedures and data
selection methods can yield different estimates of commonly used
performance measures such as accuracy, Matthews correlation
coefficient and area under the Receiver Operating Characteristic
curve. We argue that the performance estimates obtained using
sequence-based cross-validation provide more realistic estimates
of performance than those obtained using window-based cross-
validation.

I. I NTRODUCTION

Advances in high throughput data acquisition technologies
have resulted in rapid increase in the amount of data, e.g.,
DNA and protein sequences, protein structures, and gene
expression data in biological sciences. Machine learning al-
gorithms offer some of the most cost-effective methods for
acquiring useful knowledge and new insights from massive
datasets. Recent availability of easy-to-use implementations of
machine learning algorithms has led to their increasing use by
biologists on a broad range of problems in bioinformatics.

Therefore, there is a growing need for reliable procedures
for accurately assessing the performance of predictive models
(e.g., classifiers) trained using machine learning algorithms as
well as better understanding of the limitations of some of the
commonly used evaluation procedures.

In the case of classification tasks, several commonly used
performance measures (e.g., accuracy, sensitivity, and speci-
ficity, area under the ROC curve) seek to evaluate the quality
of the predictions [1]. Each of these measures summarize

the information obtained from the estimated numbers of true
positives, false positives, true negatives, and false negatives.
Unfortunately, there are often inconsistencies in the definition
of these performance measures across different papers. Even
when the same definitions are used, the procedures used to
estimate them can vary significantly across the papers, making
it difficult even to compare results on the same dataset. In
order for the estimated performance measures to be reliable,
the distribution of the training and test sets should correspond
to the “natural” distribution of the sequences that is likely to
be encountered in the real world applications.

Performance estimates are typically obtained usingk-fold
cross-validation [2]: The “data set” is divided intok equal
parts. In each experiment,k − 1 of these are used to train
the classifier and the remainder is used to evaluate the clas-
sifier. The desired performance measure (e.g., accuracy) is
obtained by averaging the estimated accuracy across thek
cross-validation runs. This approach of separating the test set
from the training set makes it possible to distinguish between
models that “overfit” (memorize) the training data and models
that can discover patterns in the data.

Many sequence classification problems involve assigning a
class label to the letter (e.g., amino acid) that appears at each
position along the sequence. Examples of such classification
tasks include prediction of protein secondary structure from
the amino acid protein sequence [3], identifying binding and
non-binding residues in a protein sequence [4], [5], identifying
residues that undergo different post-translational modifications
[6], pronouncing English words [7], fraud detection [8], etc.
For example, in RNA-Protein interface prediction, the classi-
fier has to predict the binding afinity to RNA for each amino
acid in the protein sequence. Because most machine learning
algorithms are designed to work with a fixed number of input
features, it is fairly common to use a fixed length window
corresponding to the target amino acid and an equal number
of its sequence neighbors on each side as input to the classifier.
Thus, a sliding window is used to generate a collection of fixed
length windows from each sequence. The target residue at the
center of the window is labeled with the appropriate class
label (e.g., binding or non-binding site) [9]. Now consider
the application of cross-validation to assess the performance
of a classifier on such a “data set” of labeled fixed length



windows. Because eachn-letter window sharesn−1 elements
with the preceding and succeeding windows extracted from
a given sequence, random partitioning of the “data set” of
labeled windows violates the requirement that the training and
evaluation data sets be disjoint - a critical requirement for
cross-validation. Under this procedure, which we will refer
to as window-based cross-validation[10], [11], it is likely
that both the training and test sets will contain instances that
originate from the same sequence. These instances may exhibit
highly sequential correlation [9]. More importantly, because of
this correlation, during cross-validation it is likely to result in
overly optimistic estimates of the performance measures.

Alternatively, cross-validation can be performed at the se-
quence level by distributing sequences (instead of windows)
into the k disjoint folds. We will refer to this procedure as
sequence-based cross-validation[4], [5]. Unlike window-based
cross-validation, this procedure guarantees that no part of the
same sequence ends up in both the training and test sets.
Prediction servers are most often tested on whole sequences
in order to annotate features on newly discovered proteins. In
such a case, there would not be any part of the new protein
included in the training data for that predictive model. In
such a setting,sequence-based cross-validationoffers a more
natural approach to estimating the performance of classifiers
trained to annotate each position in a sequence with a class
label.

Against this background, we comparesequence-basedand
window-based cross-validationprocedures on three represen-
tative sequence-based prediction tasks: identifying glycosyla-
tion sites, RNA-Protein interface residues, and Protein-Protein
interface residues from amino acid sequence. Our experiments
with two representative classifiers (Naive Bayes and Support
Vector Machine) show that sequence-based and windows-
based cross-validation procedures and data selection methods
can yield different estimates of commonly used performance
measures such as accuracy, Matthews correlation coefficient
and area under the ROC curve. Our results suggest that
window-based cross-validation can significantly over-estimate
the performance of the classifiers relative to sequence-based
cross validation.

The rest of the paper is organized as follows: Section 2
describes the three datasets we used to perform the experi-
ments; Section 3 presents the two cross-validation approaches;
Section 4 briefly introduces the machine learning algorithms
applied in this study; Section 5 describes the experiments and
results; Section 6 concludes with a summary and discussion
of the implications of the results.

II. DATASETS

We used three datasets to perform experiments, each corre-
sponding to a macromolecular sequence-based prediction task:

O-GLYCBASE dataset contains experimentally verified
glycosylation sites compiled from protein databases and lit-
erature. O-GlycBase v6.00 [12] does not contain duplicate
identical protein sequences, unless there are conflicts in

the glycosylation data. The dataset is available online at
http://www.cbs.dtu.dk/databases/OGLYCBASE/.

O-Linked glycosylation is a site-specific biological process.
It occurs only on Serine (S) and Threonine (T) protein
residues. However, not all of these residues in a protein
sequence are actually modified by glycosylation. Therefore,
we represent S and T sites experimentally verified to be gly-
cosylation sites as positive instances (+) and those not shown
experimentally to be either glycosylation or non-glycosylation
sites as negative instances (-). The number of S and T
sites that are not known to be glycosylation sites (negative
instances) is much larger than the number of sites known to
be glycosylation sites (positive instances). In addition, it is
highly likely that some of the sites considered as negative
instances are instead actual glycosylation sites that have not
yet been experimentally discovered to undergo glycosylation.
The dataset contains 216 glycoprotein sequences and the total
number of S/T sites is 14315.

RNA-Protein Interface dataset, RP147, consists of RNA-
binding protein sequences extracted from structures of known
RNA-Protein complexes solved by X-ray crystallography in
the Protein Data Bank [13]. Proteins with sequence iden-
tity greater than 30% or structures with resolution worse
than 3.5̊A were removed using PISCES [14]. The resulting
dataset has 147 protein sequences. The total number of amino
acid residues is 32,324. A target residue was identified as
RNA-Protein interface residue using ENTANGLE [15] with
the default parameters. The dataset is available online at
http://bindr.gdcb.iastate.edu/RNABindR/.

Protein-Protein Interface dataset consists of 42 protein
sequences, with sequence identity less than 30%. A target
residue was identified as an interface residue if its solvent
accessible surface area (ASA) computed in the complex is
less than that computed in the monomer by at least 1Å2 [16].
ASA is computed using DSSP program [17]. The total number
of interface and non-interface amino acid residues is 11,554.

In the RNA-Protein Interface and Protein-Protein In-
terface prediction tasks, we represent residues identified as
interface residues in a protein sequence as positive instances
(+) and those not identified as interface residues as negative
instances (-).

A. Feature Extraction

Because most machine learning algorithms are designed
to work with a fixed number of input features, it is com-
mon to use a local window of length2n + 1, x =
x−nx−n+1 · · ·x−1x0x1 · · ·xn−1xn, with each target residue
x0 in the middle and itsn neighbor residues,xi, i =
−n, · · · , n, i 6= 0, on each side as input to the classifier.
xi ∈ Σ, i = −n, · · · , n and x ∈ Σ∗, where Σ represents
the 20 amino acid alphabet.

For the glycosylation dataset, a local window is extracted for
each S/T glycosylated or non-glycosylated site,x0 ∈ {S, T}.
For the other two datasets considered, a local window is
extracted for every residue in a protein sequence,x0 ∈ Σ,
using the “sliding window” approach [9]. The local windows



TABLE I
NUMBER OF POSITIVE(+) AND NEGATIVE (-) INSTANCES USED IN OUR

EXPERIMENTS FORO-GLYCBASE, RNA-PROTEIN, AND

PROTEIN-PROTEIN INTERFACE DATASETS

Dataset Number of Number of Number of
Sequences + Instances - Instances

O-GlycBase 216 2168 12147
Protein-RNA 147 4336 27988

Protein-Protein 42 2350 9204

for residues close to N- and C-terminals are filled in with
missing values to obtain the same window length.

Table I shows the exact number of positive and negative
instances (glycosylation versus non-glycosylation sites and
interface versus non-interface residues) for O-GlycBase, RNA-
Protein Interface and Protein-Protein Interface datasets.

III. C ROSS-VALIDATION PROCEDURE

K-fold cross-validation is an evaluation scheme considered
by many authors to be a good method of estimating the
generalization accuracyof a predictive algorithm (i.e. the
accuracy with which the predictive algorithm fits examples
in the test set). This evaluation scheme can be described
as follows: the original dataset containingm instances is
randomly partitioned intok disjoint subsets of approximately
equal size,≈ m/k. The cross-validation procedure is then
performedk different times. Duringith run, i = 1, · · · , k,
the ith subset is used for testing and the remainingk − 1
subsets are used for training. Therefore, each instance in the
dataset is used exactly once in the test set andk− 1 times in
the training set during thek cross-validation experiments. The
results from thek different runs are then averaged.K-fold
cross-validation can be repeated several times, each time with
a different seed for randomly splitting the dataset. The more
k-fold cross-validation is repeated, the lower the variance of
the estimates.

In many papers, cross-validation is done in the following
way: local windows (instances) are extracted for each residue
in a protein sequence, using the sliding window approach, or
for some specific residues; similar (within a certain percent of
identity) or identical instances are removed from the dataset;
the resulting dataset is split into different subsets according
to some criteria. Culling datasets to reduce sequence identity
helps to avoid overestimation of performance measures [10],
[11]. This approach is calledwindow-basedk-fold cross-
validation. We note several problems with this method:
• During k evaluation runs, both the train and test sets

are likely to contain some instances that originate from
the same sequence. Thus, the train and test data sets
are not disjoint at the sequence level. By using the
sliding window approach to extract local window infor-
mation, two windows corresponding to two consecutive
amino acid residues in a sequence differ by exactly one
residue, resulting in very high correlation between the
two instances. This violates the independence assumption
between train and test sets.

• As noted above, inwindow-based cross-validation“sim-
ilar” or identical sequence windows are often eliminated
from the dataset. However, for many machine learning
algorithms, residue position matters (see, for example, the
definition of the SVM kernel described in the Machine
Learning Methods Section). Therefore, removal of similar
windows may be problematic.

• Simply eliminating “similar” or identical sequence win-
dows from the dataset perturbs the “natural” distribution
of the data extracted from the original sequence dataset.
Ideally, the performance of the classifier must be esti-
mated using the “natural” data distribution.

To overcome these problems withwindow-based cross-
validation, a different cross-validation approach, called
sequence-basedk-fold cross-validationis considered in other
papers [5], [4]. This is done as follows: the original dataset is
built so that there is no pairwise sequence identity greater than
a certain percentage (in general 25 or 30%). Unlike inwindow-
based cross-validationwhere windows (instances) are distrib-
uted intok disjoint sets, insequence-based cross-validation,
sequences are distributed intok disjoint sets, and then using
the sliding window approach, instances are extracted in each
set. This way, all instances belonging to the same sequence
end up in the same set, preserving the “natural” distribution
of the original sequence dataset (modulo any of the sequence
identity cutoff).

IV. M ACHINE LEARNING METHODS

A. Support Vector Machine Classifier

Support Vector Machine (SVM) classifier is one of the
most effective machine learning algorithms for many complex
binary classification problems [18]. It is a supervised learning
algorithm that belongs to the class of discriminative models.

Given a set of labelled inputs(xi, yi)i=1,···,l, xi ∈ Rn and
yi ∈ {−1, +1}, learning an SVM classifier is equivalent to
learning a linear decision functionf(x) =< x,w > +b, w ∈
Rn and b ∈ R, that accurately discriminate between positive
and negative labelled inputs. This can be achieved by solving
a dual quadratic optimization problem.w andb are optimized
such that the “margin” of separation (the distance) between
the two classes is maximized.

During classification, an unlabelled inputx is assigned to
a class based on the sign of the linear decision function,
sgn(f(x)) (e.g., iff(x) > 0 thenx is assigned to the positive
class; otherwisex is assigned to the negative class) [19].

However, for many real-world problems, such as biological
problems, a linear decision functionf(x) in then-dimensional
input space cannot be learned. In these cases, SVM algorithm
works by mapping the labelled inputs into a (possibly) higher-
dimensionalfeature spacethrough an appropriate feature map,
xi → Φ(xi), i = 1, · · · , l, where a linear decision function can
be found. Rather than explicitly computing the feature vector
for each data pointxi, the mapping is defined implicitly via a
kernel functionK(xi,xj) =< Φ(xi),Φ(xj) >, i, j = 1, · · · , l
that satisfies the Mercer’s Condition [18]. Thekernel function



is evaluated for each pair of data points, and it specifies a
similarity measure between them.

In this study, we used 0/1 String Kernel with SVM classifier,
the mappings being done implicitly. This kernel specifies a
similarity measure between two local windowsx andy based
on their identities. Formally, this is defined as:

K(x, y) = (
n∑

i=−n

I[xi = yi])2 (1)

where I[.] is the indicator function (I[xi = yi] = 1 if the
amino acids on theith position of the two local windows are
the same,xi = yi, andI[xi = yi] = 0, otherwise). The higher
the value of the kernelK(x, y), the more similar the local
windowsx andy.

B. Naive Bayes Classifier

Naive Bayes classifier [2] is one of the simplest probabilistic
approaches. It belongs to the class of generative models, in
which the probabilitiesp(x|y) and p(y) of the inputx and
the class labely are estimated from the data. In general
the input x is high-dimensional, represented as a tuple of
attribute values,x = (x1,x2, · · · ,xn), making it impossible to
estimatep(x|y) for large values ofn. However, Naive Bayes
classifier makes the assumption that the attribute values are
conditionally independent given the class. Therefore, training
a Naive Bayes classifier reduces to estimating probabilities
p(xi|y), i = 1, · · · , n, andp(y). During classification, Bayes
Rule is applied to computep(y|xtest) and the class label with
the highest posterior probability is assigned to the new input
xtest.

V. EXPERIMENTS AND RESULTS

A. Experimental Design

For each classification task considered in this study, we per-
formed experiments usingwindow-based, andsequence-based
k-fold cross-validation. In the former,k-fold cross-validation
is performed on the set of local windows extracted from all the
protein sequences in each dataset. In the latter,k-fold cross-
validation is performed on the set of protein sequences in each
dataset. Thus, protein sequences are randomly distributed into
folds and then local windows are extracted from sequences in
each fold.

Typically, most biological datasets are highly unbalanced,
i.e. the number of negative instances is much larger compared
to the number of positive instances. Unbalanced data sets
present challenges to most standard machine learning algo-
rithms, such as the ones discussed in this study. When the
dataset is unbalanced, the traditional performance measure of
accuracy is not a good indicator of the performance of the
classifier because the classifier will be biased towards the
class with larger number of instances (negative class in our
case). In such a setting, even a classifier that always labels
instances as negatives would give a reasonably good accuracy
while performing unnacceptably poor on the minoirity class
(positive class in our case) [20]. To avoid this problem, we

optimized the classification thresholdθ: an instance is pre-
dicted as positive ifP (c = +1|x) > θ (whereP (c = +1|x)
is the estimated probability of the positive class givenx),
and negative otherwise. We selected the best classification
thresholdθ such that a given performance measure (Matthews
correlation coefficient) is optimized on the training data. Note
however, that optimizing machine learning classsifier with
unbalanced data sets is not the focus of this study. Any of a
wide range of methods described in the literature on learning
classifiers from unbalanced data could be used to replace the
simple method used here [20].

Because Support Vector Machine (SVM) classifiers solve a
dual quadratic optimization problem to find the linear decision
function, it is computationally expensive to train them when
the number of instances in the dataset is very large. As can be
seen in Table I, our biological datasets are very large. Thus,
we used anensemble learningapproach [21] to reduce the
overall training time of SVM classifiers. Instead of training
a single classifier, we trained a collection of classifiers, with
each being trained on a balanced fraction of the data, obtained
by randomly sampling from the whole data. We used weighted
majority vote to combine their predictions.

We evaluated the effect of dataset size on the performance
measures for the two types of cross-validation procedures.
Thus, we randomly sampled different fraction of the data,
starting with 10% of the sequences, and iteratively increas-
ing the size of the dataset by 2.5% of sequences, until all
sequences were used.

A major challenge that one may encounter while doing
sequence-based cross-validationexperiments is that although
the k disjoint sets have approximately the same number of
sequences, they could be highly unbalanced in terms of both
the number of instances in each set if the sequence lengths vary
signficantly, and the number of instances in each set belonging
to different classes.

B. Performance Evaluation

To assess the performance of our classifiers we reported
the following measures described in [1]: Accuracy, Matthews
Correlation Coefficient (CC), Sensitivity, and Specificity. If we
denote true positives, false negatives, false positives, and true
negatives byTP , FN , FP , andTN respectively, then these
measures can be defined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

CC =
TP · TN − FP · FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TP

TP + FP
(5)



TABLE II
EXPERIMENTAL RESULTS FOR WINDOW-BASED K-FOLD CROSS-VALIDATION (WINCV), AND SEQUENCE-BASED K-FOLD CROSS-VALIDATION (SEQCV)

FOR O-GLYCBASE DATASET USING A SINGLE NAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measure WinCV SeqCV WinCV SeqCV
Accuracy 0.93 0.86 0.94 0.88
MCC 0.69 0.54 0.75 0.53
Sensitivity 0.55 0.72 0.64 0.60
Specificity 0.95 0.53 0.96 0.61
AUC 0.91 0.87 0.93 0.90

TABLE III
EXPERIMENTAL RESULTS FOR WINDOW-BASED K-FOLD CROSS-VALIDATION (WINCV), AND SEQUENCE-BASED K-FOLD CROSS-VALIDATION (SEQCV)

FOR RNA-PROTEIN INTERFACE DATASET USING A SINGLENAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measure WinCV SeqCV WinCV SeqCV
Accuracy 0.83 0.83 0.82 0.82
MCC 0.34 0.30 0.34 0.33
Sensitivity 0.32 0.18 0.34 0.34
Specificity 0.58 0.72 0.55 0.54
AUC 0.74 0.73 0.74 0.74

TABLE IV
EXPERIMENTAL RESULTS FOR WINDOW-BASED K-FOLD CROSS-VALIDATION (WINCV), AND SEQUENCE-BASED K-FOLD CROSS-VALIDATION (SEQCV)

FOR PROTEIN-PROTEIN INTERFACE DATASET USING A SINGLENAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measure WinCV SeqCV WinCV SeqCV
Accuracy 0.68 0.64 0.70 0.70
MCC 0.14 0.13 0.19 0.20
Sensitivity 0.42 0.46 0.47 0.48
Specificity 0.29 0.28 0.33 0.33
AUC 0.62 0.61 0.66 0.65

The Receiver Operating Characteristic (ROC) curve plots
the proportion of correctly classified positive examples, True
Positive Rate (TPR) as a function of the proportion of in-
correctly classified negative examples, False Positive Rate
(FPR) for different classification thresholds. In comparing two
different classifiers using ROC curves, for the same False
Positive Rate, the classifier with higher True Positive Rate
gives better performance measures. Each point on the ROC
curve represents a classification thresholdθ and corresponds
to particular values of TPR and FPR.

To evaluate how good a classifier is at discriminating
between the positive and negative examples, we also report
the Area Under the ROC Curve (AUC) on the test set, which
represents the probability of correct classification ([22], [1]).
That is, an AUC of0.5 indicates a random discrimination
between positives and negatives (random classifier), while
an AUC of 1 indicates a perfect dicrimination (very good
classifier).

C. Results

For each classification task considered in this study, we
trained and evaluated single Naive Bayes and ensemble of Sup-
port Vector Machine (SVM) classifiers, using bothwindow-
basedandsequence-based k-fold cross-validation(we setk =
10 in our experiments). To reduce the variance of the estimated
performance measures, we repeatedk-fold cross-validation 50

times for each Naive Bayes experiment. We computed the
performance measures by averaging the results obtained after
everyk-fold cross-validation run. Due to the large number of
instances in each dataset and the time complexity of training
SVM classifiers, we performedk-fold cross-validation only
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Fig. 1. Receiver Operaring Characteristic (ROC) curves for window-based
and sequence-based cross-validation experiments using an ensemble of SVM
classifiers on O-GlycBase dataset
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Fig. 2. Comparison of Area Under the ROC Curve (AUC) (upper plots) and Matthews Correlation Coefficient (lower plots) between window-based and
sequence-based cross-validation on O-GlycBase (left), RNA-Protein Interface (middle), and Protein-Protein Interface (right) datasets from which we randomly
sampled different fraction of the data, starting with 10% of the sequences, and iteratively increasing the size of the data by 2.5% of sequences, until all
sequences were used.

once for each SVM experiment. The kernel for SVM classifier
is 0/1 String Kernel, as described in the Machine Learning
Methods section. In all our experiments, we used a window
size ofn=21 (10 residues on each side of the target residue)
for each instance.

We show experimental results in Tables II - IV. As can be
seen, in most cases, the performance measures obtained with
window-based k-fold cross-validationare more optimistic than
those obtained withsequence-based k-fold cross-validation.
For example, Area Under the ROC Curve (AUC) is always
larger usingwindow-based k-fold cross-validationfor any of
the three classification tasks considered. Matthews Correlation
Coefficient (CC) is larger usingwindow-basedthansequence-
based k-fold cross-validationon all three classification tasks
using a single Naive Bayes, and two classification tasks using
an ensemble of SVMs.

In Figure 1, we compare the ROC curves forwindow-
basedandsequence-based cross-validationexperiments using
an ensemble of SVMs on O-GlycBase dataset. It can be seen
that window-based cross-validationhas a larger AUC than
sequence-based cross-validation.

These results seem to validate the assertion thatwindow-
based k-fold cross-validationoverestimates the performance
of a classifier relative to that obtained usingsequence-based
k-fold cross-validation.

We also trained and evaluated single Naive Bayes on differ-
ent fractions of the data that were randomly sampled from the
whole data (as explained in the Experimental Design section),
using bothwindow-basedand sequence-based k-fold cross-
validation. In Figure 2, we compare AUC and CC obtained

using window-basedand sequence-based cross-validationfor
all three classification tasks when we iteratively increase the
size of the dataset. These results show that the difference in
performance measures is higher when the data are scarce, and
becomes smaller as more data are used. Eventually, the per-
formance measures for the two approaches tend to converge.
However, it is unclear how much data would be needed in
order for them to converge to a single point. These results
suggest that as the dataset grows in size, the dependencies
between the training and test sets that are present in window-
based cross-validation become less and less of an advantage
for the classifier.

VI. CONCLUSION

With the increasing use of machine learning approaches in
bioinformatics, there is a growing need for reliable procedures
for accurately assessing the performance of predictive models
(e.g., classifiers) trained using machine learning algorithms as
well as better understanding of the limitations of some of the
commonly used evaluation procedures.

In this paper, we focus on some of the problems of assess-
ing the performance of classifiers trained on macromolecular
sequence data, with an emphasis on cross-validation and
data selection methods. Specifically, we compare two variants
of k-fold cross-validation in this setting:window-basedk-
fold cross-validation, in which windows are distributed ran-
domly into k disjoint sets; andsequence-basedk-fold cross-
validation, in which sequences are distributed intok disjoint
sets.



Several datasets drawn from representative sequence-based
prediction tasks were used in this study: identifying glycosyla-
tion sites, RNA-Protein interface residues, and Protein-Protein
interface residues from amino acid sequence. Our experiments
with two representative classifiers (Naive Bayes and Support
Vector Machine) show thatsequence-basedand windows-
based cross-validationprocedures and data selection methods
can yield different estimates of commonly used performance
measures such as accuracy, correlation coefficient and area
under the ROC curve.

Our results suggest that window-based cross-validation can
yield overly optimistic estimates of the performance of the
classifiers relative to the estimates obtained using sequence-
based cross-validation.The smaller the size of the training
dataset, the greater is the magnitude of the difference between
the estimates obtained using the two procedures. Also, the
effect is more significant for specific types of datasets. For
example, on the glycosylation site prediction task,windows-
based cross-validationyields significantly more optimistic
estimates of classifier performance than those obtained using
sequence-based cross-validation. However, the differences in
the performance estimates obtained using thewindows-based
andsequence-based cross-validationare smaller in the case of
RNA-Protein and Protein-Protein interface residue prediction.
Because predictors trained on labeled sequence data have to
predict the labels for residues in a novel sequence, we be-
lieve that the estimates obtained using sequence-based cross-
validation provide more realistic estimates of performance
than those obtained using window-based cross-validation.

Additional challenges are presented both in the design of
machine learning algorithms and the assessment of perfor-
mance of trained classifiers by the imbalances in the dis-
tribution of class labels (as is typical in the case of many
macromolecular sequence-based prediction problems), the dif-
ferences in the distribution of lengths of the sequences, and
heterogeneity of sequences in the dataset (e.g., arising from
differences in sequences associated with different evolutionary
lineages, functional or structural families, etc.). Thus, there is
a need for more systematic theoretical as well as empirical
studies of the underlying classification problems as well as
performance assessment procedures.
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