Assessing the Performance of Macromolecular
Sequence Classifiers

Cornelia Caragea, Jivko Sinapov, Vasant Honavar Drena Dobbs
Computer Science Department Department of Genetics and Cell Biology
lowa State University lowa State University
Ames, lowa, USA Ames, lowa, USA
Email: {cornelia, jsinapov, honavh@cs.iastate.edu Email: ddobbs@iastate.edu

Abstract—Machine learning approaches offer some of the most the information obtained from the estimated numbers of true
cost-effective approaches to building predictive models (e.g., clas-positives, false positives, true negatives, and false negatives.
sifiers) in a broad range of applications in computational biology.  nfortunately, there are often inconsistencies in the definition
Comparing the effectiveness of different algorithms requires .
reliable procedures for accurately assessing the performance (e.g.,Of these performanclellfneasures across different papers. Even
accuracy, sensitivity, and specificity) of the resulting predictive When the same definitions are used, the procedures used to
classifiers. The difficulty of this task is compounded by the use estimate them can vary significantly across the papers, making
of different data selection and evaluation procedures and in jt difficult even to compare results on the same dataset. In
some cases, even different definitions for the_ same pen‘ormanceOrder for the estimated performance measures to be reliable,
measures. We explore the problem of assessing the performance s s
of predictive classifiers trained on macromolecular sequence data, the distribution Of, th_e trgmlng and test sets should _correspond
with an emphasis on cross-validation and data selection meth- t0 the “natural” distribution of the sequences that is likely to
ods. Specifically, we compare sequence-based and window-basetbe encountered in the real world applications.
cross-validation procedures on three sequence-based prediction Performance estimates are typically obtained usirfigld
tasks: identification of glycosylation sites, RNA-Protein interface << _yalidation [2]: The “data set” is divided into equal

residues, and Protein-Protein interface residues from amino acid . .
sequence. Our experiments with two representative classifiers parts. In .e.ach experiment, o 1 O,f these are used to train
(Naive Bayes and Support Vector Machine) show that sequence- the classifier and the remainder is used to evaluate the clas-
based and windows-based cross-validation procedures and datasifier. The desired performance measure (e.g., accuracy) is
selection methods can yield different estimates of commonly used gptained by averaging the estimated accuracy acrosskthe
performance measures such as accuracy, Matthews correlation o455 validation runs. This approach of separating the test set
coefficient and area under the Receiver Operatlng Cha.racterlsftlc f the traini t kes it ible to disti sh betw
curve. We argue that the performance estimates obtained using rom the training Set makes it possibie 1o distinguish between
sequence-based cross-validation provide more realistic estimatesmodels that “overfit” (memorize) the training data and models
of performance than those obtained using window-based cross- that can discover patterns in the data.
validation. Many sequence classification problems involve assigning a
class label to the letter (e.g., amino acid) that appears at each
position along the sequence. Examples of such classification
Advances in high throughput data acquisition technologi¢ssks include prediction of protein secondary structure from
have resulted in rapid increase in the amount of data, eihe amino acid protein sequence [3], identifying binding and
DNA and protein sequences, protein structures, and gemen-binding residues in a protein sequence [4], [5], identifying
expression data in biological sciences. Machine learning aésidues that undergo different post-translational modifications
gorithms offer some of the most cost-effective methods @8], pronouncing English words [7], fraud detection [8], etc.
acquiring useful knowledge and new insights from massior example, in RNA-Protein interface prediction, the classi-
datasets. Recent availability of easy-to-use implementationsfiet has to predict the binding afinity to RNA for each amino
machine learning algorithms has led to their increasing use &gid in the protein sequence. Because most machine learning
biologists on a broad range of problems in bioinformatics. algorithms are designed to work with a fixed number of input
Therefore, there is a growing need for reliable procedurésatures, it is fairly common to use a fixed length window
for accurately assessing the performance of predictive modetsresponding to the target amino acid and an equal number
(e.g., classifiers) trained using machine learning algorithms @fsits sequence neighbors on each side as input to the classifier.
well as better understanding of the limitations of some of tHEhus, a sliding window is used to generate a collection of fixed
commonly used evaluation procedures. length windows from each sequence. The target residue at the
In the case of classification tasks, several commonly useenter of the window is labeled with the appropriate class
performance measures (e.g., accuracy, sensitivity, and spéadel (e.g., binding or non-binding site) [9]. Now consider
ficity, area under the ROC curve) seek to evaluate the qualibe application of cross-validation to assess the performance
of the predictions [1]. Each of these measures summariaéa classifier on such a “data set” of labeled fixed length
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windows. Because eachletter window shares — 1 elements the glycosylation data. The dataset is available online at
with the preceding and succeeding windows extracted framtp://www.cbs.dtu.dk/databases/OGLYCBASE!/.
a given sequence, random partitioning of the “data set” of O-Linked glycosylation is a site-specific biological process.
labeled windows violates the requirement that the training aftd occurs only on Serine (S) and Threonine (T) protein
evaluation data sets be disjoint - a critical requirement foesidues. However, not all of these residues in a protein
cross-validation. Under this procedure, which we will refesequence are actually modified by glycosylation. Therefore,
to as window-based cross-validatiofilO], [11], it is likely we represent S and T sites experimentally verified to be gly-
that both the training and test sets will contain instances ttaisylation sites as positive instances (+) and those not shown
originate from the same sequence. These instances may extdkgerimentally to be either glycosylation or non-glycosylation
highly sequential correlation [9]. More importantly, because aftes as negative instances (-). The number of S and T
this correlation, during cross-validation it is likely to result irsites that are not known to be glycosylation sites (negative
overly optimistic estimates of the performance measures. instances) is much larger than the number of sites known to
Alternatively, cross-validation can be performed at the sbe glycosylation sites (positive instances). In addition, it is
guence level by distributing sequences (instead of windowsphly likely that some of the sites considered as negative
into the k disjoint folds. We will refer to this procedure asinstances are instead actual glycosylation sites that have not
sequence-based cross-validafidl [5]. Unlike window-based yet been experimentally discovered to undergo glycosylation.
cross-validation this procedure guarantees that no part of thEhe dataset contains 216 glycoprotein sequences and the total
same sequence ends up in both the training and test setgnber of S/T sites is 14315.
Prediction servers are most often tested on whole sequenceBNA-Protein Interface dataset, RP147 consists of RNA-
in order to annotate features on newly discovered proteins.limding protein sequences extracted from structures of known
such a case, there would not be any part of the new prot&MNA-Protein complexes solved by X-ray crystallography in
included in the training data for that predictive model. Ithe Protein Data Bank [13]. Proteins with sequence iden-
such a settingsequence-based cross-validatiofiers a more tity greater than 30% or structures with resolution worse
natural approach to estimating the performance of classifi¢hen 3.51 were removed using PISCES [14]. The resulting
trained to annotate each position in a sequence with a clasgaset has 147 protein sequences. The total number of amino
label. acid residues is 32,324. A target residue was identified as
Against this background, we compasequence-baseand RNA-Protein interface residue using ENTANGLE [15] with
window-based cross-validatioprocedures on three representhe default parameters. The dataset is available online at
tative sequence-based prediction tasks: identifying glycosyfitp:/bindr.gdcb.iastate.edu/RNABIndR/.
tion sites, RNA-Protein interface residues, and Protein-ProteinProtein-Protein Interface dataset consists of 42 protein
interface residues from amino acid sequence. Our experimegggluences, with sequence identity less than 30%. A target
with two representative classifiers (Naive Bayes and Suppéesidue was identified as an interface residue if its solvent
Vector Machine) show that sequence-based and windov@scessible surface area (ASA) computed in the complex is
based cross-validation procedures and data selection methiegs than that computed in the monomer by at leat [1.6].
can yield different estimates of commonly used performanééA is computed using DSSP program [17]. The total number
measures such as accuracy, Matthews correlation coefficiehinterface and non-interface amino acid residues is 11,554.
and area under the ROC curve. Our results suggest thatn the RNA-Protein Interface and Protein-Protein In-
window-based cross-validation can significantly over-estimaigrface prediction tasks, we represent residues identified as
the performance of the classifiers relative to sequence-ba#@érface residues in a protein sequence as positive instances
cross validation. (+) and those not identified as interface residues as negative
The rest of the paper is organized as follows: Sectionigstances (-).
describes the three datasets we used to perform the exp&ri-
ments; Section 3 presents the two cross-validation approaches;
Section 4 briefly introduces the machine learning algorithms Because most machine learning algorithms are designed
applied in this study; Section 5 describes the experiments dfdwork with a fixed number of input features, it is com-
results; Section 6 concludes with a summary and discussi®@n to use a local window of lengtten + 1, = =

Feature Extraction

of the implications of the results. T_pT_pi1:  T_1ToT1 - Tn—1Tn, With each target residue
2o in the middle and itsn neighbor residuesy;, i =
Il. DATASETS -n,---,n, ¢ # 0, on each side as input to the classifier.
x; € 3,1 = —n,---,nandx € X*, whereX represents

We used three datasets to perform experiments, each cothe- 20 amino acid alphabet.
sponding to a macromolecular sequence-based prediction taskeor the glycosylation dataset, a local window is extracted for
O-GLYCBASE dataset contains experimentally verified each S/T glycosylated or non-glycosylated sitg,c {S,7T'}.
glycosylation sites compiled from protein databases and IFor the other two datasets considered, a local window is
erature. O-GlycBase v6.00 [12] does not contain duplicagxtracted for every residue in a protein sequenggec X,
identical protein sequences, unless there are conflicts using the “sliding window” approach [9]. The local windows



TABLE |

NUMBER OF POSITIVE(+) AND NEGATIVE (-) INSTANCES USED IN OUR « As noted above, iwindow-based cross-validatidisim-
EXPERIMENTS FORO-GLYCBASE, RNA-PROTEIN, AND ilar” or identical sequence windows are often eliminated
PROTEIN-PROTEIN INTERFACE DATASETS from the dataset. However, for many machine learning
algorithms, residue position matters (see, for example, the
Dataset | Number of | Number of | Number of definition of the SVM kernel described in the Machine
Sequences| + Instances| - Instances . . L
O-GlycBase >16 5168 12147 Learning Methods Section). Therefore, removal of similar
Protein-RNA 147 4336 27988 windows may be problematic.
Protein-Protein 42 2350 9204 « Simply eliminating “similar” or identical sequence win-

dows from the dataset perturbs the “natural” distribution

of the data extracted from the original sequence dataset.
for residues close to N- and C-terminals are filled in with Ideally, the performance of the classifier must be esti-
missing values to obtain the same window length. mated using the “natural” data distribution.

Table | shows the exact number of positive and negativeTo overcome these problems withindow-based cross-
instances (glycosylation versus non-glycosylation sites agglidation a different cross-validation approach, called
interface versus non-interface residues) for O-GlycBase, RN&equence-basekHold cross-validationis considered in other
Protein Interface and Protein-Protein Interface datasets. papers [5], [4]. This is done as follows: the original dataset is
IIl. CROSSVALIDATION PROCEDURE built so that there is no pairwise sequence identi_ty g_reater than

o . _ . acertain percentage (in general 25 or 30%). Unlikeiimdow-

K-fold cross-validation is an evaluation scheme considerglqe cross-validatiowhere windows (instances) are distrib-
by many a_uthors to be a good. method Of, esumatmg RRed into k disjoint sets, insequence-based cross-validation
generalization accuracyf a predictive algorithm (i.e. the qoq,ences are distributed intodisjoint sets, and then using
accuracy with which the predictive algorithm fits exampleg,e g|iding window approach, instances are extracted in each
in the test set). This evaluation scheme can be descrileq This way, all instances belonging to the same sequence
as follows: the original dataset containing instances is end up in the same set, preserving the “natural” distribution

randomly partitioned intd: disjoint subsets of approximately j¢ \ha original sequence dataset (modulo any of the sequence
equal size,x~ m/k. The cross-validation procedure is theri‘dentity cutoff)

performedk different times. Duringi’” run, i = 1,---,k,
the ’ith subset is used for testing and the remainiﬂg— 1 IV. MACHINE LEARNING METHODS
subsets are used for training. Therefore, each instance in the . -
dataset is used exactly once in the test set/andl times in A Support Vector Machine Classifier
the training set during the cross-validation experiments. The Support Vector Machine (SVM) classifier is one of the
results from thek different runs are then averageff-fold most effective machine learning algorithms for many complex
cross-validation can be repeated several times, each time vigthary classification problems [18]. It is a supervised learning
a different seed for randomly splitting the dataset. The moadgorithm that belongs to the class of discriminative models.
k-fold cross-validation is repeated, the lower the variance of Given a set of labelled inputsc;, y;)i=1....;, x; € R" and
the estimates. y; € {—1,+1}, learning an SVM classifier is equivalent to
In many papers, cross-validation is done in the followingarning a linear decision functiofi(x) =< x,w > +b, w €
way: local windows (instances) are extracted for each residR& andb € R, that accurately discriminate between positive
in a protein sequence, using the sliding window approach, axid negative labelled inputs. This can be achieved by solving
for some specific residues; similar (within a certain percent afdual quadratic optimization problew. andb are optimized
identity) or identical instances are removed from the datasstich that the “margin” of separation (the distance) between
the resulting dataset is split into different subsets accorditige two classes is maximized.
to some criteria. Culling datasets to reduce sequence identitypuring classification, an unlabelled inptis assigned to
helps to avoid overestimation of performance measures [18],class based on the sign of the linear decision function,
[11]. This approach is calledvindow-basedk-fold cross- sgn(f(x)) (e.g., if f(x) > 0 thenx is assigned to the positive
validation We note several problems with this method: class; otherwise is assigned to the negative class) [19].
« During & evaluation runs, both the train and test sets However, for many real-world problems, such as biological
are likely to contain some instances that originate froproblems, a linear decision functigiix) in the n-dimensional
the same sequenceThus, the train and test data setsput space cannot be learned. In these cases, SVM algorithm
are not disjoint at the sequence level. By using thevorks by mapping the labelled inputs into a (possibly) higher-
sliding window approach to extract local window infor-dimensionafeature spac¢hrough an appropriate feature map,
mation, two windows corresponding to two consecutive; — ®(x;),i =1,---,l, where a linear decision function can
amino acid residues in a sequence differ by exactly ohe found. Rather than explicitly computing the feature vector
residue, resulting in very high correlation between thi®r each data poink;, the mapping is defined implicitly via a
two instances. This violates the independence assumptla@rnel functionk (x;,x;) =< ®(x;), (x;) >, 4,5 =1,---,1
between train and test sets. that satisfies the Mercer’s Condition [18]. Tkernel function



is evaluated for each pair of data points, and it specifiesoptimized the classification threshold an instance is pre-
similarity measure between them. dicted as positive ifP(c = +1|x) > 6 (where P(c = +1|x)

In this study, we used 0/1 String Kernel with SVM classifieiis the estimated probability of the positive class given
the mappings being done implicitly. This kernel specifies @and negative otherwise. We selected the best classification
similarity measure between two local windowsandy based thresholdd such that a given performance measure (Matthews

on their identities. Formally, this is defined as: correlation coefficient) is optimized on the training data. Note
" however, that optimizing machine learning classsifier with
= ( Z I[z; = yi))? (1) unbalanced data sets is not the focus of this study. Any of a

= wide range of methods described in the literature on learning

classifiers from unbalanced data could be used to replace the
simple method used here [20].

Because Support Vector Machine (SVM) classifiers solve a
dual quadratic optimization problem to find the linear decision
function, it is computationally expensive to train them when
the number of instances in the dataset is very large. As can be
B. Naive Bayes Classifier seen in Table I, our biological datasets are very large. Thus,
e used arensemble learningpproach [21] to reduce the
rall training time of SVM classifiers. Instead of training
r%mgle classifier, we trained a collection of classifiers, with

ach being trained on a balanced fraction of the data, obtained
aﬁ randomly sampling from the whole data. We used weighted
(Pﬁ/ajority vote to combine their predictions.

We evaluated the effect of dataset size on the performance
measures for the two types of cross-validation procedures.
heus we randomly sampled different fraction of the data,
Iggartmg with 10% of the sequences, and iteratively increas-
ﬁ1sg the size of the dataset by 2.5% of sequences, until all

where I[] is the indicator function I[[z; = y;] = 1 if the
amino acids on theé*” position of the two local windows are
the samey, = y;, andI[z; = y;] = 0, otherwise). The higher
the value of the kerneK (z,y), the more similar the local
windows z andy.

Naive Bayes classifier [2] is one of the simplest pI’ObablllstI(():ve
approaches. It belongs to the class of generative models,
which the probabilitiesp(x|y) and p(y) of the inputx and
the class labely are estimated from the data. In gener
the inputx is high-dimensional, represented as a tuple
attribute valuesx = (x1,xa2, - - -, X5, ), making it impossible to
estimatep(x|y) for large values ofi. However, Naive Bayes
classifier makes the assumption that the attribute values
conditionally independent given the class. Therefore, traini

p(xily), i = 1,---,n, andp(y). During classification, Bayes
. . sequences were used.
Rule is applied to computg(y|x:.s:) and the class label with 9

. X Lores . : A major challenge that one may encounter while doing
the highest posterior probability is assigned to the new mpgéquence-based cross-validatierperiments is that although

the &k disjoint sets have approximately the same number of
V. EXPERIMENTS AND RESULTS sequences, they could be highly unbalanced in terms of both
the number of instances in each set if the sequence lengths vary

signficantly, and the number of instances in each set belonging
For each classification task considered in this study, we pe&s-different classes.

formed experiments usingindow-basedandsequence-based

k-fold cross-validationIn the former,k-fold cross-validation B. Performance Evaluation

is performed on the set of local windows extracted from all the To assess the performance of our classifiers we reported
protein sequences in each dataset. In the latténld cross- the following measures described in [1]: Accuracy, Matthews
validation is performed on the set of protein sequences in eaghyrelation Coefficient (CC), Sensitivity, and Specificity. If we
dataset. Thus, protein sequences are randomly distributed igéote true positives, false negatives, false positives, and true
folds and then local windows are extracted from sequencesyggatives by’'P, FN, FP, andT N respectively, then these

Xtest-

A. Experimental Design

each fold. measures can be defined as follows:
Typically, most biological datasets are highly unbalanced,
i.e. the number of negative instances is much larger compared TP+TN

Accuracy = (2)

to the number of positive instances. Unbalanced data sets
present challenges to most standard machine learning algo-
rithms, such as the ones discussed in this study. When the TP.-TN — FP-FN
dataset is unbalanced, the traditional performance measuresf =

accuracy is not a good indicator of the performance of the V(TP +FN)(TP + FP)(TNJFFP)(TNJFFN&)

classifier because the classifier will be biased towards the

TP+ FN+ FP+TN

class with larger number of instances (negative class in our TP

case). In such a setting, even a classifier that always labels Sensitivity = TP+ FN 4
instances as negatives would give a reasonably good accuracy

while performing unnacceptably poor on the minoirity class TP

(positive class in our case) [20]. To avoid this problem, we Specificity = TP + FP ®)



TABLE ||
EXPERIMENTAL RESULTS FOR WINDOWBASED K-FOLD CROSSVALIDATION (WINCV), AND SEQUENCEBASED K-FOLD CROSSVALIDATION (SEQCV)
FORO-GLYCBASEDATASET USING A SINGLENAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measur¢ WInCV | SeqCV | WinCV SeqCV
Accuracy 0.93 0.86 0.94 0.88
MCC 0.69 0.54 0.75 0.53
Sensitivity 0.55 0.72 0.64 0.60
Specificity 0.95 0.53 0.96 0.61
AUC 0.91 0.87 0.93 0.90
TABLE Il

EXPERIMENTAL RESULTS FOR WINDOWBASED K-FOLD CROSSVALIDATION (WINCV), AND SEQUENCEBASED K-FOLD CROSSVALIDATION (SEQCV)
FOR RNA-PROTEIN INTERFACE DATASET USING A SINGLENAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measur¢ WInCV | SeqCV | WinCV SeqCV
Accuracy 0.83 0.83 0.82 0.82
MCC 0.34 0.30 0.34 0.33
Sensitivity 0.32 0.18 0.34 0.34
Specificity 0.58 0.72 0.55 0.54
AUC 0.74 0.73 0.74 0.74
TABLE IV

EXPERIMENTAL RESULTS FOR WINDOWBASED K-FOLD CROSSVALIDATION (WINCV), AND SEQUENCEBASED K-FOLD CROSSVALIDATION (SEQCV)
FOR PROTEIN-PROTEIN INTERFACE DATASET USING A SINGLENAIVE BAYES AND AN ENSEMBLE OF SUPPORTVECTORMACHINE (SVM) CLASSIFIERS

Classifier/ Naive Bayes Ensemble of SVMs
Performance Measure¢ WINCV | SeqCV | WinCV | SeqCV
Accuracy 0.68 0.64 0.70 0.70
MCC 0.14 0.13 0.19 0.20
Sensitivity 0.42 0.46 0.47 0.48
Specificity 0.29 0.28 0.33 0.33
AUC 0.62 0.61 0.66 0.65

The Receiver Operating Characteristic (ROC) curve plotisnes for each Naive Bayes experiment. We computed the
the proportion of correctly classified positive examples, Trygerformance measures by averaging the results obtained after
Positive Rate (TPR) as a function of the proportion of inevery k-fold cross-validation run. Due to the large number of
correctly classified negative examples, False Positive Ratstances in each dataset and the time complexity of training
(FPR) for different classification thresholds. In comparing twBVM classifiers, we performed-fold cross-validation only
different classifiers using ROC curves, for the same False
Positive Rate, the classifier with higher True Positive Rate
gives better performance measures. Each point on the ROC
curve represents a classification threshéldnd corresponds
to particular values of TPR and FPR.

To evaluate how good a classifier is at discriminating
between the positive and negative examples, we also report
the Area Under the ROC Curve (AUC) on the test set, which o7
represents the probability of correct classification ([22], [1]).
That is, an AUC of0.5 indicates a random discrimination
between positives and negatives (random classifier), while
an AUC of 1 indicates a perfect dicrimination (very good
classifier). 03
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For each classification task considered in this study, we % o1 02 o3 o4 o5 o6 o7 o8 oo 1
trained and evaluated single Naive Bayes and ensemble of Sup- False Positive Rate
port Vector Machine (SVM) classifiers, using bothindow-
basedandsequ_ence'based k-fold cross-v_alldat(we setk ~  Fig. 1. Receiver Operaring Characteristic (ROC) curves for window-based
10 in our experiments). To reduce the variance of the estlmataai sequence-based cross-validation experiments using an ensemble of SVM
performance measures, we repedigfdld cross-validation 50 classifiers on O-GlycBase dataset
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Fig. 2. Comparison of Area Under the ROC Curve (AUC) (upper plots) and Matthews Correlation Coefficient (lower plots) between window-based and
sequence-based cross-validation on O-GlycBase (left), RNA-Protein Interface (middle), and Protein-Protein Interface (right) datasets from which we randomly
sampled different fraction of the data, starting with 10% of the sequences, and iteratively increasing the size of the data by 2.5% of sequences, until all
sequences were used.

once for each SVM experiment. The kernel for SVM classifiarsing window-basedand sequence-based cross-validatifor

is 0/1 String Kernel, as described in the Machine Learnirgl three classification tasks when we iteratively increase the
Methods section. In all our experiments, we used a windasize of the dataset. These results show that the difference in
size ofn=21 (10 residues on each side of the target residygdrformance measures is higher when the data are scarce, and
for each instance. becomes smaller as more data are used. Eventually, the per-

We show experimental results in Tables Il - IV. As can bformance measures for the two approaches tend to converge.
seen, in most cases, the performance measures obtained witlvever, it is unclear how much data would be needed in
window-based k-fold cross-validati@me more optimistic than order for them to converge to a single point. These results
those obtained wittsequence-based k-fold cross-validatiorsuggest that as the dataset grows in size, the dependencies
For example, Area Under the ROC Curve (AUC) is alwaylsetween the training and test sets that are present in window-
larger usingwindow-based k-fold cross-validatidor any of based cross-validation become less and less of an advantage
the three classification tasks considered. Matthews Correlatfon the classifier.
Coefficient (CC) is larger usingindow-basedhansequence-
based k-fold cross-validatioon all three classification tasks
using a single Naive Bayes, and two classification tasks using
an ensemble of SVMs. With the increasing use of machine learning approaches in

In Figure 1, we compare the ROC curves faindow- bioinformatics, there is a growing need for reliable procedures
basedand sequence-based cross-validatiexperiments using for accurately assessing the performance of predictive models
an ensemble of SVMs on O-GlycBase dataset. It can be séerg., classifiers) trained using machine learning algorithms as
that window-based cross-validatiohas a larger AUC than well as better understanding of the limitations of some of the
sequence-based cross-validation commonly used evaluation procedures.

These results seem to validate the assertion whatlow- In this paper, we focus on some of the problems of assess-
based k-fold cross-validatiooverestimates the performanceng the performance of classifiers trained on macromolecular
of a classifier relative to that obtained usisgguence-based sequence data, with an emphasis on cross-validation and
k-fold cross-validation data selection methods. Specifically, we compare two variants

We also trained and evaluated single Naive Bayes on diffef k-fold cross-validation in this settingwindow-basedk-
ent fractions of the data that were randomly sampled from tf&d cross-validation in which windows are distributed ran-
whole data (as explained in the Experimental Design sectiodpmly into £ disjoint sets; andsequence-basek-fold cross-
using bothwindow-basedand sequence-based k-fold crossvalidation in which sequences are distributed iritalisjoint
validation In Figure 2, we compare AUC and CC obtainedets.

VI. CONCLUSION
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example, on the glycosylation site prediction taskndows- Res, vol. 27, no. 1, pp. 370-2, 1999.
based cross-validatioryields significantly more optimistic [13] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,
estimates of classifier performance than those obtained using L-O?h;%dY;AO\g%ndZZ.ZB%B%e, “The protein data bamkjtleic Acid Res
sequence-based cro_ss-vahdandﬂlowever_, the_d'ﬁerences iN[14] G. Wang and R. Dunbrack, “Pisces:a protein sequence culling server.”
the performance estimates obtained usingwiredows-based Bioinformatics vol. 19, pp. 1589-1591, 2003. _ _
andsequence-based cross-validatiare smaller in the case of [15] J. Allers and Y. Shamoo, “Structure-based analysis of protein-ma
. . L . - interactions using the program entanglé,mol Biol vol. 311, pp. 75—
RNA-Protein and Protein-Protein interface residue prediction. gg 2001.
Because predictors trained on labeled sequence data haveig) S. Jones and J. Thomton, “Principles of protein-protein interactions,”
redict the labels for residues in a novel sequence, we he- Proc. Natl Acad. Sci, USAvol. 93, pp. 13-20, 1996.
IF.J h h . btained . 9 b d ?7 W. Kabsch and C. SandeBjopolymersvol. 22, p. 2577, 1983.
ieve that the estimates obtained using sequence-based Cross-c. J. C. Burges, “A tutorial on support vector machines for pattern
validation provide more realistic estimates of performance recognition,”Data Mining and Knowledge Discoveryol. 2, pp. 121
than those obtained using window-based cross-validation. 167,1998. . .
L. . . [l?] V. Vapnik, Statistical learning theory Springer-Verlag, New York,
Additional challenges are presented both in the design 0" 1995
machine learning algorithms and the assessment of perfias] M. C. Monard and G. E. A. P. A. Batista, “Learning with Skewed Class
mance of trained classifiers by the imbalances in the dis- DPistributions,” inAdvances in Logic, Artificial Intelligence and Robofics
. . . y . . J. M. Abe and J. |. da Silva Filho, Eds. a& Paulo, SP: I0S Press,
tribution of class labels (as is typical in the case of many 002, pp. 173-180.
macromolecular sequence-based prediction problems), the (#if} T. G. Dietterich, “Ensemble methods in machine learniniggtture
ferences in the distribution of lengths of the sequences, Notes in Computer Scienceol. 1857, pp. 1-15, 2000.

. . . 22] M. Gribskov and N. Robinson, “Th use of receiver operating character-
h_etemgene'_ty of sequences 'n_the da_tase_t (e.9., ansing froM istic (roc) analysis to evaluate sequence matching,” 1996.
differences in sequences associated with different evolutionary
lineages, functional or structural families, etc.). Thus, there is
a need for more systematic theoretical as well as empirical
studies of the underlying classification problems as well as

performance assessment procedures.
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