
IJCAI 2016

Proceedings of the Workshop on
Scholarly Big Data: AI Perspectives, Challenges, and Ideas

July 9, 2016
New York City, USA

ijcai16sbd preface

Preface

The IJCAI 2016 Workshop on Scholarly Big Data: AI Perspectives, Challenges, and Ideas is to
be held on July 9, 2016 in New York. The workshop’s objective is to bring together researchers
addressing a wide-range of questions pertaining to mining, managing and searching Scholarly
Big Data and using the Social Web lenses to discover new patterns and introduce new metrics.

The workshop program includes two invited talks by researchers who are experts in the
fields of data mining, information retrieval, and natural language processing: Prof. C. Lee
Giles from the Pennsylvania State University and Dr. Iris Shen from Microsoft Research,
Redmond. After a rigorous review process, four long papers were selected for inclusion into the
workshop proceedings by the Program Committee.

We hope that these papers summarize novel findings related to scholarly big data and inspire
further research interest on this exciting topic. We thank the authors, invited speakers, program
committee members, and participants for sharing their
research ideas and valuable time to be part of IJCAI 2016 SBD!

July 1, 2016
Singapore

Cornelia Caragea
Madian Khabsa

Sujatha Das Gollapalli
C. Lee Giles

Alex D. Wade

i

ijcai16sbd Program Committee

Program Committee

Hamed Alhoori Northern Illinois University
Cornelia Caragea University of North Texas
Doina Caragea Kansas State University
Sujatha Das Gollapalli I2R, A*STAR
C. Lee Giles The Pennsylvania State University
Kazi Hasan University of Texas at Dallas
Min-Yen Kan National University of Singapore
Madian Khabsa Microsoft Research
Rada Milhalcea University of Michigan
Ani Nenkova University of Pennsylvania
Yang Peng Institute for Infocomm Research, A*STAR
Kazunari Sugiyama National University of Singapore
Niket Tandon Max Planck Institute for Informatics
Suppawong Tuarob Mahidol University
Alex Wade Microsoft Research
Xiaojun Wan Peking University
Zhaohui Wu The Pennsylvania State University
Feng Xia Dalian University of Technology
Fang Yuan Institute for Infocomm Research, A*STAR

1

ijcai16sbd Additional Reviewers

Additional Reviewers

Bekele, Teshome Megersa
Wang, Wei

1

ijcai16sbd Table of Contents

Table of Contents

Introduction to Scholarly Big Data . 1

C. Lee Giles

Microsoft Academic Service and Applications: Challenges and Opportunities 2

Iris Shen

Random Forest DBSCAN Clustering for USPTO Inventor Name Disambiguation and
Conflation . 3

Kunho Kim, Madian Khabsa and C. Lee Giles

Temporal Quasi-Semantic Visualization and Exploration of Large Scientific Publication
Corpora. 9

Victor Andrei and Ognjen Arandjelovic

Identifying Academic Papers in Computer Science Based on Text Classification 16

Tong Zhou, Yi Zhang and Jianguo Lu

Near-duplicated Documents in CiteSeerX. 22

Yi Zhang and Jianguo Lu

1

(Invited Talk) Introduction to Scholarly Big Data

C. Lee Giles

College of Information Sciences and Technology

The Pennsylvania State University

giles@ist.psu.edu

About the Speaker:
C. Lee Giles is the David Reese Professor of Information Sciences and Technology at the Pennsylvania State University with
appointments in the departments of Computer Science and Engineering, and Supply Chain and Information Systems. He is
also the Director of the Intelligent Systems Research Laboratory. He was a co-creator of the popular search engine CiteSeer
(now CiteSeerx) and related scholarly search engines. He directs the CiteSeerx project and co-directs the ChemxSeer project
at Penn State. Lee’s research interests are in intelligent cyber-infrastructure and big data, web tools, specialty search engines,
information retrieval, digital libraries, web services, knowledge and information extraction, data mining, entity disambiguation,
and social networks. He has published over 300 papers in these areas. He is a fellow of the ACM, IEEE, and INNS. Lee serves
on many related conference program committees and has helped organize many related meetings and workshops. He has given
many invited and keynote talks and seminars.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 1

(Invited Talk) Microsoft Academic Service and Applications: Challenges and
Opportunities

Zhihong (Iris) Shen

Microsoft Research, Redmond, WA

hihosh@microsoft.com

Abstract

In this talk, we will introduce the new release of a Web scale entity graph, which serves as the backbone of Mi-
crosoft Academic Service. The architecture of the data pipeline which produces Microsoft Academic Graph will be
presented. Challenges and opportunities on various research topics as well as engineering efforts are exploited. In
addition, Microsoft Research has opened up this graph dataset to the research community with new APIs to support
further research, experimentation, and development. This talk will highlight how the research community can take
advantage of these data and APIs to fuel new research opportunities.

About the Speaker:
Zhihong (Iris) Shen is a Senior Data Scientist at Microsoft Research, Redmond, WA. She obtained her Ph.D. in Operations
Research at the University of Southern California. She is involved in the new generation of Microsoft Academic Service
since 2014 and has been working on various research and engineering problems in the project, such as heterogeneous graph
generation, entity recognition/linking, and entity recommendation etc.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 2

Random Forest DBSCAN Clustering for USPTO Inventor Name Disambiguation
and Conflation

Kunho Kim‡, Madian Khabsa∗, C. Lee Giles†‡
‡Computer Science and Engineering ∗Microsoft Research
†Information Sciences and Technology One Microsoft Way

The Pennsylvania State University Redmond, WA 98005, USA
University Park, PA 16802, USA

kunho@cse.psu.edu, madian.khabsa@microsoft.com, giles@ist.psu.edu

Abstract

Name disambiguation and the subsequent name conflation
are essential for the correct processing of person name queries
in a digital library or other database. It distinguishes each
unique person from all other records in the database. We
study inventor name disambiguation for a patent database us-
ing methods and features from earlier work on author name
disambiguation and propose a feature set appropriate for a
patent database. A random forest was selected for the pair-
wise linking classifier since they outperform Naive Bayes,
Logistic Regression, Support Vector Machines (SVM), Con-
ditional Inference Tree, and Decision Trees. Blocking size,
very important for scaling, was selected based on experiments
that determined feature importance and accuracy. The DB-
SCAN algorithm is used for clustering records, using a dis-
tance function derived from random forest classifier. For ad-
ditional scalability clustering was parallelized. Tests on the
USPTO patent database show that our method successfully
disambiguated 12 million inventor mentions within 6.5 hours.
Evaluation on datasets from USPTO PatentsView inventor
name disambiguation competition shows our algorithm out-
performs all algorithms in the competition.

Introduction
One of the most frequent queries for digital library search
system is a person name. An example is to find all relevant
records of a particular person. For a patent database, users
may want to find the list of patents of a certain inventor. This
query can be problematic if there is no unique identifier for
each person. In that case, a method must be used to distin-
guish between person records in the database. This is often
referred to as the personal name disambiguation problem.

There are several factors that make this problem hard.
Firstly, there can be several different formats for display-
ing one person’s name. For example, one record has the full
name ”John Doe”, while another contains only the iniital of
first name, ”J. Doe”. More importantly, there are some com-
mon names that many people share. We can see this problem

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A shorter version of this paper was published in JCDL (Kim,
Khabsa, and Giles 2016)

often with Asian names. Statistics from Wikipedia1 show
that 84.8% of the population have one of the top 100 popu-
lar surnames in China, while only 16.4% of common names
in United States. For some records the first and last name
is reversed, especially for certain groups that put the last
name first for their full name. Lastly, typographical errors
and foreign characters can also challenge disambiguation.
In addition, because of the large number of records, usually
millions, manual disambiguation of all records is not feasi-
ble (which is even then not perfect) and automated meth-
ods have to be used. An automatic name disambiguation al-
gorithm typically consists of two parts. The first is a pair-
wise linkage classifier that determines whether each pair of
records are from the same person or not (Winkler 2014). The
second is a clustering algorithm, grouping records for each
unique person using the classifier.

Here, we propose to use an author name disambiguation
algorithm for the patent inventor database. Our algorithm
follows the typical steps of author name disambiguation, but
with a newly proposed set of features from patent metadata.
Having experimented with several different classifers, we
use a random forest classifier to train for pairwise linkage
classification and use DBSCAN for clustering for disam-
biguation. We use the publicly available USPTO database
for testing. Recently there was an inventor name disam-
biguation competition for this database. Raw data is pub-
licly available via the competition’s web page2. This raw
data contains all published US patent grants from 1976 to
2014. Although we didn’t participate in the competition, we
used the same training and test datasets used in the com-
petition for evaluation. The competition’s evaluation results
show our algorithm to be superior to other suggested algo-
rithms in the competition. A detailed explanation of dataset
and results can be found in results section.

Related Work
Several approaches have been proposed for pairwise linkage
classification using different machine learning algorithms.
Han et al. (2004) proposed two approaches using a Hybrid

1List of common Chinese surnames, in Wikipedia.
https://en.wikipedia.org/wiki/List_of_
common_Chinese_surname

2http://www.dev.patentsview.org/workshop

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 3

Naive Bayes and support vector machine(SVM) classifier.
Huang et al. (2006) used an online active SVM(LASVM)
to boost the speed of SVM classifier. Song et al. (2007)
used probabilistic latent semantic analysis(pLSA) and La-
tent Dirichlet allocation(LDA) to disambiguate names based
on publication content. Treeratpituk and Giles (2009) first
introduced the random forest (RF) for disambiguation and
showed the random forest classifier at the time to have the
best accuracy compared to other machine learning based
classifiers. Godoi et al. (2013) used an iterative approach
to update ambiguous linkage with user feedback. Fan et al.
(2011) used graph based framework for name disambigua-
tion, and Hermansson et al. (2013) used graph kernels to
calculate similarity based on local neighborhood structure.
Instead of using machine learning algorithms, Santana et al.
(2014) used domain specific heuristics for classification. Re-
cently, Ventura et al. (2015) applied a random forest classi-
fier with agglomerative clustering for inventor name disam-
biguation for USPTO database.

For clustering algorithms for disambiguation, Mann and
Yarowsky (2003) used a simple agglomerative clustering
which still had a transitivity problem. The transitivity prob-
lem occurs when there are three records a, b, c and while
a matches to b, b matches to c, a does not match with
c. Han et al. (2005) used K-spectral clustering which had
scaling issues and the K (number of clusters) was heuris-
tically determined. To overcome those problems, Huang et
al. (2006) proposed a density-based clustering(DBSCAN)
algorithm. Another is a graphical approach using condi-
tional random fields for clustering, using Markov Chain
Monte Carlo(MCMC) methods (Wick, Singh, and Mc-
Callum 2012). Recently Khabsa et al. (2015) proposed a
constraint-based clustering algorithm based on DBSCAN
and extended it to handle online clustering.

Disambiguation Process
Patent records have consistent metadata to that of scholarly
publications. There exists title, personal information of in-
ventors, such as name, affiliation, etc. Ventura et al. (2015)
applied author name disambiguation algorithms to patent
records, showing very promising results. Our algorithm fol-
lows the same general steps of author name disambiguation.

First we train a pairwise classifier that determines whether
each pair of inventor records is same person or not. Second,
we apply blocking to the entire records for scaling. Finally,
we cluster inventor records from each block separately using
the classifier learned from the previous step.

Training Pairwise Classifier
Pairwise classifier is needed to distinguish whether each pair
of inventor records is the same person or not. In this sec-
tion we show what features are used and how we sample the
training data. We compare several machine learning classi-
fiers to find the best one for inventor name disambiguation.

Selecting Features We start with the feature set used in
Ventura et al. (2015), and test additional features that are
used in author disambiguation for scholarly databases. We
only kept features that had a meaningful decrease in Gini

Category Subcategory Features

Inventor

First name Exact, Jaro-Winkler, Soundex
Middle name Exact, Jaro-Winkler, Soundex

Last name Exact, Jaro-Winkler, Soundex, IDF
Suffix Exact
Order Order comparision

Affiliation
City Exact, Jaro-Winkler, Soundex
State Exact

Country Exact
Co-author Last name # of name shared, IDF, Jaccard
Assignee Last name Exact, Jaro-Winkler, Soundex

Group Group Exact
Subgroup Exact

Title Title # of term shared

Table 1: Features used for the random forest

importance if they were removed. Table 1 shows all features
used for the random forest classifier. A detailed explanation
of each term is as follows:
• Exact: Exact string match, 3 if name matches and both

full names, 2 if initial matches and not both full names, 1
if initial not matches and not both full names, 0 if name
not matches and both full names.

• Jaro-Winkler: Jaro-Winkler distance (Winkler 1990) of
two strings. Jaro-Winkler distance is a variant of Jaro dis-
tance. Jaro disatnace dj of two string s1 and s2 is calcu-
lated as

dj =

{
0 if nm = 0
1
3

(
nm

|s1| +
nm

|s2| +
nm− 1

2nt

nm

)
otherwise

where nm is number of matching characters, and nt is
number of transpositions. Each character is considered as
a match only if they are within distance of a half length
of a longer string −1. Jaro-Winkler distance djw of two
strings are calculated using this Jaro distance dj ,

djw = dj + lprefixp(1− dj)

where lprefix is length of common prefix between two
strings (up to 4 characters). p is a scaling factor, we use
0.1.

• Soundex: Convert each string with Soundex algorithm
(Knuth 1973) and then do an exact string match giving
credit for phonetically similar strings. The basic idea of
soundex algorithm is to cluster phonetically similar con-
sonants and convert them with the group number. {b, f, p,
v}, {c, g, j, k, q, s, x, z}, {d,t}, {l}, {m,n}, {r} are the 6
groups.

• IDF: Inverse document frequency(calculated by # of
records total/# of records with name) of the name, to give
more weight to a unique name.

• Order comparison: 2 if both records are first author, 1 if
both records are last author, 0 otherwise.

• # of name shared: number of same name shared without
considering order.

• # of term shared: number of shared terms appear in both
titles, excluding common stop words.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 4

Method Precision Recall F1
Naive Bayes 0.9246 0.9527 0.9384

Logistic Regression 0.9481 0.9877 0.9470
SVM 0.9613 0.9958 0.9782

Decision Tree 0.9781 0.9798 0.9789
Conditional Inference Tree 0.9821 0.9879 0.9850

Random Forest 0.9839 0.9946 0.9892

Table 2: Comparison of different classification methods

Selecting Samples for Training Classifier The existing
labeled data from the USPTO database has two challenges
in that we cannot directly use all possible pairs as a training
set for a classifier. First, the majority of the labeled clusters
have only a single record. In the Mixture dataset, these are
3,491 clusters out of 4,956 clusters(70.44%) and in the Com-
mon characteristics dataset 26,648 clusters out of 30,745
clusters(86.67%) that have only a single record. Those clus-
ters are not useful as training data because we can only get
negative pairs (two records not from the same person) from
them. To train a good classifier, we need data that can give
both positive and negative examples. As such we removed
all those clusters, and used clusters that only have more than
1 record.

Second, there were insufficient informative negative sam-
ples from the labeled datasets. Since we need to use blocking
for scaling, we want to use only pairs that consist of records
from same block, since pairs from different blocks are not
going to be examined in the clustering process. But there
were few different clusters within each block in the labeled
datasets. Since there were fewer negative samples than posi-
tive samples and to avoid overfitting, we take samples from a
bigger block than the actual blocking size, using first 3 char-
acters of last name+first name initial while actual blocking
is done with full last name+first name initial.

Classifier Selection We experimented with several super-
vised classifiers using the proposed feature set. We tested
with the mixture of two training datasets - Mixture and Com-
mon characteristics. A detailed explanation of the datasets
are in the result section. Table 2 shows the results with 4-
fold cross validation. Tree-based classifiers have a higher
accuracy compared to non-tree classifiers such as SVM and
logistic regression. Among them, the Random Forest (RF)
classifier gives the best accuracy in terms of F1 score. RF is
an ensemble classifier that aggregates the votes from deci-
sion trees for classification (Breiman 2001). Previous work
(Treeratpituk and Giles 2009) showed RF is effective for
pairwise linkage classification in scholarly database. This
experiments showed that for patent database RF also has the
best accuracy. We trained our RF classifier with 100 trees
with 5 features tried in each split. We estimated the out-
of-bag (OOB) error of the RF to measure the classification
quality. OOB error is known to be an unbiased estimation of
test set classification error (Breiman 2001). The error rates
for Common characteristics and Mixture dataset were 0.05%
and 0.07% respectively.

Rank Feature
1 Last name (Jaro-Winkler)
2 First name (Jaro-Winkler)
3 Last name (Exact)
4 Last name (Soundex)
5 First name (Soundex)
6 Affiliation (Jaro-Winkler)
7 First name (Exact)
8 State (Exact)
9 Middle name (Soundex)

10 Middle name (Exact)

Table 3: Top 10 important features of the random forest with
respect to the Gini decrease

Blocking

The USPTO patent database consists of 12 millions of in-
ventor mentions. Due to the limitation of physical memory,
we cannot efficiently perform the clustering for the whole
database. Blocking is done in preprocessing in order to solve
this problem . Records are split into several blocks, based on
the blocking function. The function should be carefully se-
lected so that records from the same person are in the same
block with high probability (Bilenko, Kamath, and Mooney
2006). Then we perform clustering for each block.

Table 3 shows the top 10 important features of the RF ac-
cording to the average Gini decrease. The table shows the
most important features are from first name and last name.
All features from them are in top 10 except for the last name
IDF. Thus, for best performance we made a blocking func-
tion with a combination of the first name and last name.
Figure 1 and Table 4 shows the accuracy and computation
time with respect to different block sizes. While precision
is steady with different block sizes, recall gets lower as the
block size becomes smaller, as does F1. This is because this
blocking function splits the potential matches into different
blocks. While the accuracy is getting lower, the computation
time is reduced due to smaller block sizes. We use full last
name+initial of first name, which was the blocking function
that gives highest accuracy and that each block can be loaded
fully into memory.

Clustering Using DBSCAN

We use a density-based clustering algorithm, DBSCAN (Es-
ter et al. 1996) to cluster inventor records. DBSCAN is
widely used for disambiguation, because it does not require
a prior the number of clusters, and it resolves the transitivity
problem (Huang, Ertekin, and Giles 2006).

Using DBSCAN to cluster inventor records, we need to
define a distance function for each pair of inventor records.
The RF classifier predicts whether each pair of records are
from the same person or not with a binary value(0 or 1) out-
put. From the RF, we can get the number of negative/positive
votes in its trees. We use the fraction of negative(0) votes of
the trees in random forest as the distance function (Treer-
atpituk and Giles 2009). The final resulting clusters from
DBSCAN algorithm are the result of the disambiguation.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 5

FN(1)+LN(f) FN(3)+LN(f) FN(5)+LN(f) FN(f)+LN(f)
0.97

0.975

0.98

0.985

0.99

0.995

1

blocking size

v
a
lu

e

precision recall f1

Figure 1: Evaluation of different blocking size. FN denotes
the first name and LN denotes the last name. The number
(n) denotes first n characters used for blocking. If n is f, full
name was used.

Block FN(1)+LN(f) FN(3)+LN(f) FN(5)+LN(f) FN(f)+LN(f)
Time 6h 30min 5h 49min 5h 27min 5h 17min

Table 4: Computation time comparision for different block
size

Parallelization
We use parallelization of GNU Parallel (Tange and others
2011) to utilize all cores available for clustering (Khabsa,
Treeratpituk, and Giles 2014). Our work consumes memory
proportional to the total number of records in the block. Due
to the limitation of our physical memory, we cannot com-
pletely utilize all cores at a time if block size is too large. As
such, we grouped all blocks with respect to total number of
records.

The machine we use for the experiment has about 40GB
memory available, and 12 cores(runs up to 24 threads si-
multaneously) at best. The first group consists of blocks that
have less than 500 records, and we run 24 threads maximum
simultaneously. The second group consists of blocks that
have between 500 and 5,000 records and we run 12 threads
maximum. The last group consists of blocks that have more
than 5,000 records and we run 6 threads maximum.

Results
We tested our algorithm on the USPTO patent database. We
used the same evaluation datasets of USPTO Patentsview
inventor named disambiguation competition to compare the
results. The test dataset includes ALS, ALS common, IS,
E&S, and Phase2. The ALS and ALS common datasets
are from Azoulay et al. (2007), which consists of inventors
from the Association of Medical Colleges(AAMC) Faculty
Roster. ALS common is a subset of the ALS dataset with
common popular names. The IS dataset is from Trajten-

0 1000 2000 3000 4000 5000 6000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

cluster size

fr
e
q
u
e
n
c
y
(l
o
g
 s

c
a
le

)

CiteSeerX

USPTO

Figure 2: Frequency of each cluster size for the CiteSeerX
and USPTO database

berg and Shiff (2008), containing Israeli inventors in USPTO
database. E&S dataset is from Ge et al. (2016) and consists
of patents from engineers and scientists. Phase2 is a random
mixture of previous datasets. The training dataset includes
the Mixture and Common characteristics datasets. Mixture
dataset is random mixture of IS and E&S dataset, and Com-
mon characteristics dataset is a subsample of E&S dataset
which was subsampled according to the match characteris-
tics of the USPTO database, in terms of the mean number of
inventors per patent and percentage of missing assignees.

The result of our disambiguated USPTO database shows
a similar tendency to previous disambiguation studies of
scholarly databases. Figure 2 shows the cluster frequency
of each cluster size of CiteSeerX3 and USPTO database af-
ter disambiguation. For both databases, small clusters have
high frequency and big clusters are rare with a long tail. A
total of 1.11 million clusters are produced by inventor name
disambiguation and the average number of patent mentions
per individual inventor is 4.93. For CiteSeerX database, the
average number is 6.07.

For further evaluation, we measured pairwise precision,
recall, and F1 score with definitions:

Pairwise Precision =
of correctly matched pairs

of all matched pairs by algorithm

Pairwise Recall =
of correctly matched pairs

of pairs in manually labeled dataset

Pairwise F1 Score = 2· Pairwise Precision · Pairwise Recall
Pairwise Precision + Pairwise Recall

Table 5 shows the results for each training and test dataset.
Results were slightly better with the Common characteris-
tics dataset, as expected from OOB error of RF. This is be-
cause common characteristics dataset has more samples and

3http://citeseerx.ist.psu.edu

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 6

Test Set Training Set Precision Recall F1 Score

ALS Mixture 0.9963 0.9790 0.9786
Common 0.9960 0.9848 0.9904

ALS common Mixture 0.9841 0.9796 0.9818
Common 0.9820 0.9916 0.9868

IS Mixture 0.9989 0.9813 0.9900
Common 0.9989 0.9813 0.9900

E&S Mixture 0.9992 0.9805 0.9898
Common 0.9995 0.9810 0.9902

Phase2 Mixture 0.9912 0.9760 0.9836
Common 0.9916 0.9759 0.9837

Table 5: Disambiguation evaluation

Test Set F1(Ours) F1(Winner)
ALS 0.9904 0.9879

ALS common 0.9868 0.9815
IS 0.9900 0.9783

E&S 0.9902 0.9835
Phase2 0.9837 0.9826

Average(±stddev.) 0.9882±0.0029 0.9827±0.0035

Table 6: Comparison with the competition winner

is subsampled according to match the characteristics of the
whole USPTO database. We can also see that the recall is
relatively lower compare to the precision. Blocking affects
the recall, as it can remove some potential matches. Since
we have a trade-off between efficiency and recall in our al-
gorithm, blocking needs to be further improved for higher
recall. Table 6 shows F1 score comparison between our work
and the best result from the competition for each test dataset.
The winner of the competition used a pre-defined distance
metric and Markov Chain Monte Carlo(MCMC) based clus-
tering method inspired from (Wick, Singh, and McCallum
2012). Note that our algorithm has the best performance on
all datasets. The P value with one-tailed Wilcoxon test is
0.03125, which indicates that the improvement of our algo-
rithm is statistically significant at the 0.05 level. We can see
from the results that the DBSCAN algorithm with the RF
classifier used in scholarly disambiguation is also effective
for inventor name disambiguation in a patent database.

Our disambiguation is much faster with parallelization.
We used Intel Xeon X5660@2.80GHz machine with 12
cores and 40GB memory available in an idle state, config-
ured with RHEL 6. The disambiguation process takes about
6.5 hours to finish for both training sets. Currently we cannot
fully utilize all the CPUs for certain blocks that contain large
number of records, because of memory limitations. Better
way of blocking such as (Bilenko, Kamath, and Mooney
2006) is needed for efficient memory usage, for fast perfor-
mance and scalability. This remains as a future work.

Conclusions
We present a machine learning based algorithm for inven-
tor name disambiguation for patent database. Motivated by
the feature set of author name disambiguation for scholarly
databases, we devised a proposed feature set that showed a
significant low OOB error rate, 0.05% at minimum. Based

on experiments with several machine learning classifiers,
we use random forest classifier to determine whether each
pair of inventor records are from a the same inventor or
not. Disambiguation is done by using DBSCAN clustering
algorithm. We define distance function of each pair of in-
ventor records as the ratio of votes in random forest clas-
sifier. In addition to make the algorithm scalable, we use
blocking and parallelization, scheduling threads based on
the size of blocks. Evaluation results with the dataset from
USPTO PatentsView inventor name disambiguation compe-
tition shows our algorithm outperforms all algorithms sub-
mitted to the competition in comparable running time.

Currently our algorithm is memory bounded since a great
deal of memory is used to store inventor information needed
for calculating features. This becomes a bottleneck when we
parallelize the algorithm, since some of the block is huge due
to the popularity of certain names. In future work, one could
explore a better method for blocking for efficient memory
usage. It would be interesting to see if other methods using
graph or link data could be incorporated for better perfor-
mance.

Acknowledgments
We gratefully acknowledge Evgeny Klochikhin and Ahmad
Emad for assistance in the evaluation of the dataset used in
USPTO PatentsView inventor name disambiguation compe-
tition and partial support from the National Science Founda-
tion.

References
Azoulay, P.; Michigan, R.; and Sampat, B. N. 2007. The
anatomy of medical school patenting. New England Journal
of Medicine 357(20):2049–2056.
Bilenko, M.; Kamath, B.; and Mooney, R. J. 2006. Adap-
tive blocking: Learning to scale up record linkage. In Pro-
ceedings of the 6th IEEE International Conference on Data
Mining(ICDM’06), 87–96.
Breiman, L. 2001. Random forests. Machine learning
45(1):5–32.
Ester, M.; Kriegel, H.-P.; Sander, J.; and Xu, X. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining(KDD’96), volume 96, 226–231.
Fan, X.; Wang, J.; Pu, X.; Zhou, L.; and Lv, B. 2011. On
graph-based name disambiguation. Journal of Data and In-
formation Quality (JDIQ) 2(2):10.
Ge, C.; Huang, K.-W.; and Png, I. 2016. Engineer/scientist
careers: Patents, online profiles, and misclassification bias.
Strategic Management Journal 37(1):232–253.
Godoi, T. A.; Torres, R. d. S.; Carvalho, A. M.; Gonçalves,
Marcos A .and Ferreira, A. A.; Fan, W.; and Fox, E. A. 2013.
A relevance feedback approach for the author name disam-
biguation problem. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries(JCDL’13), 209–218.
Han, H.; Giles, C. L.; Zha, H.; Li, C.; and Tsioutsioulik-
lis, K. 2004. Two supervised learning approaches for

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 7

name disambiguation in author citations. In Proceed-
ings of the ACM/IEEE Joint Conference on Digital Li-
braries(JCDL’04), 296–305.
Han, H.; Zha, H.; and Giles, C. L. 2005. Name disam-
biguation in author citations using a k-way spectral cluster-
ing method. In Proceedings of the ACM/IEEE Joint Confer-
ence on Digital Libraries(JCDL’05), 334–343.
Hermansson, L.; Kerola, T.; Johansson, F.; Jethava, V.; and
Dubhashi, D. 2013. Entity disambiguation in anonymized
graphs using graph kernels. In Proceedings of the 22nd ACM
International Conference on information & knowledge man-
agement(CIKM’13), 1037–1046.
Huang, J.; Ertekin, S.; and Giles, C. L. 2006. Efficient name
disambiguation for large-scale databases. In Proceedings of
the 10th European Conference on Principle and Practice of
Knowledge Discovery in Databases(PKDD’06), 536–544.
Khabsa, M.; Treeratpituk, P.; and Giles, C. L. 2014. Large
scale author name disambiguation in digital libraries. In
IEEE International Conference on Big Data, 41–42.
Khabsa, M.; Treeratpituk, P.; and Giles, C. L. 2015. On-
line person name disambiguation with constraints. In Pro-
ceedings of the ACM/IEEE Joint Conference on Digital Li-
braries(JCDL’15), 37–46.
Kim, K.; Khabsa, M.; and Giles, C. L. 2016. Inventor name
disambiguation for a patent database using a random forest
and dbscan. In Proceedings of the ACM/IEEE Joint Confer-
ence on Digital Libraries(JCDL’16).
Knuth, D. E. 1973. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley.
Mann, G. S., and Yarowsky, D. 2003. Unsupervised personal
name disambiguation. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL 2003,
volume 4, 33–40. Association for Computational Linguis-
tics.
Santana, A. F.; Gonçalves, M. A.; Laender, A. H.; and Fer-
reira, A. 2014. Combining domain-specific heuristics for au-
thor name disambiguation. In Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries(JCDL’14), 173–182.
Song, Y.; Huang, J.; Councill, I. G.; Li, J.; and Giles, C. L.
2007. Efficient topic-based unsupervised name disambigua-
tion. In Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries(JCDL’07), 342–351.
Tange, O., et al. 2011. Gnu parallel-the command-line
power tool. The USENIX Magazine 36(1):42–47.
Trajtenberg, M., and Shiff, G. 2008. Identification and mo-
bility of Israeli patenting inventors. Pinhas Sapir Center for
Development.
Treeratpituk, P., and Giles, C. L. 2009. Disambiguating
authors in academic publications using random forests. In
Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries(JCDL’09), 39–48.
Ventura, S. L.; Nugent, R.; and Fuchs, E. R. 2015. Seeing
the non-stars:(some) sources of bias in past disambiguation
approaches and a new public tool leveraging labeled records.
Research Policy.

Wick, M.; Singh, S.; and McCallum, A. 2012. A discrimina-
tive hierarchical model for fast coreference at large scale. In
Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics(ACL’12), 379–388. Associa-
tion for Computational Linguistics.
Winkler, W. E. 1990. String comparator metrics and en-
hanced decision rules in the fellegi-sunter model of record
linkage. In Proceedings of the Section on Survey Research
Methods, 354–359. American Statistical Association.
Winkler, W. E. 2014. Matching and record linkage. Wiley In-
terdisciplinary Reviews: Computational Statistics 6(5):313–
325.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 8

Temporal Quasi-Semantic Visualization and Exploration of Large Scientific
Publication Corpora

Victor Andrei and Ognjen Arandjelović
University of St Andrews, St Andrews KY16 9SX, United Kingdom

Abstract
The huge amount of information in the form of
the rapidly growing corpus of scholarly literature
presents a major bottleneck to research advance-
ment. The use of artificial intelligence and mod-
ern machine learning techniques has the potential
of overcoming some of the associated challenges.
In this paper we introduce as our main contribution
a visualization tool which enables a researcher to
analyse large longitudinal corpora of scholarly lit-
erature in an intuitive, quasi-semantic fashion. The
tool allows the user to search for particular topics,
track their temporal interdependencies (e.g. ances-
tral or descendent topics), and examine their domi-
nance within the corpus across time. Our visualiza-
tion builds upon a temporal topic model capable of
extracting meaningful information from large lon-
gitudinal corpora, and of tracking complex tempo-
ral changes within it. The framework comprises:
(i) discretization of time into epochs, (ii) epoch-
wise topic discovery using a hierarchical Dirichlet
process based model, and (iii) a temporal similar-
ity graph which allows for the modelling of com-
plex topic changes. Unlike previously proposed
methods our algorithm distinguishes between two
groups of particularly challenging and pertinent
topic evolution phenomena: topic splitting and spe-
ciation, and topic convergence and merging, in ad-
dition to the more widely recognized emergence
and disappearance, and gradual evolution. Evalua-
tion is performed on a public medical literature cor-
pus concerned with the highly pertinent condition:
the so-called metabolic syndrome.

1 Introduction
Recent years have witnessed a remarkable convergence of
two broad trends. The first of these concerns information
i.e. data – rapid technological advances coupled with an in-
creased presence of computing in nearly every aspect of daily
life, have for the first time made it possible to acquire and
store massive amounts of highly diverse types of information.
Concurrently and in no small part propelled by the described
environment, research in artificial intelligence – in machine

learning, data mining, and pattern recognition, in particular
– has reached a sufficient level of methodological sophistica-
tion and maturity to process and analyse the collected data,
with the aim of extracting novel and useful knowledge. Ap-
plication domains pertaining to health care and emergency
situations have attracted a significant amount of attention. For
example, heterogeneous data collected and stored in the form
of large scale longitudinal electronic health records (EHRs) is
increasingly recognized as a promising target for knowledge
extraction algorithms [Arandjelović, 2015b,a; Vasiljeva and
Arandjelović, 2016b,c,a; Christensen and Ellingsen, 2016;
Xu et al., 2016], as has the diverse information content shared
across social media platforms [Abel et al., 2011; Agarwal et
al., 2011; Baucom et al., 2013; Beykikhoshk et al., 2014;
Bollen et al., 2011].

It is insightful to observe that the research community it-
self stands to benefit from this by means of retrospection and
introspection [Blei and Lafferty, 2007; Andrei and Arand-
jelović, 2016]. In particular, a potential obstacle to innova-
tion and research lies in the amount of information which
needs to be organized, contextualized, and understood within
the research literature corpus. This is especially the case in
fields associated with a particularly fast pace of innovation
and publication such as medicine and computer science. The
amount of published research in these fields is immense and
its growth is only continuing to accelerate, posing a clear
challenge to a researcher. Even restricted to a specified field
of research, the amount of published data and findings makes
it impossible for a human to survey the entirety of relevant
publications exhaustively which inherently leads to the ques-
tion of what kind of important information or insight may go
unnoticed or insufficiently appreciated.

1.1 Key challenges and our contributions
On the broad scale there are two challenges that must be over-
come in order to facilitate the type of analysis argued for in
the previous section. The first of these is the technical prob-
lem of knowledge extraction itself. The complex and highly
heterogeneous nature of data of interest requires a sufficiently
nuanced analytical framework which is capable of inferring
the wide range of changes and interactions between topics
over time [Beykikhoshk et al., 2015b]. Our algorithm which
addresses this challenge is described in Section 2. The second
major challenge concerns the human-machine gap, that is, the

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 9

problem of being able to present the extracted information to
a non-expert user in a manner which is intuitive and which
allows the user to search, navigate, and explore information
within a large longitudinal data set in a semantically meaning-
ful manner [Chaney and Blei, 2012]. Section 3.3 describes
some of the key functionalities of the visualization tool we
developed which achieves this. The tool is freely available
upon request.

1.2 Previous work
Unsurprisingly, the challenge of semantic knowledge extrac-
tion from large document corpora has already attracted sig-
nificant research attention [Blei and Lafferty, 2006a; Andrei
and Arandjelović, 2016]. Most of it has focused on so-called
‘static’ document collections. This means that such collec-
tions are treated as sets without any associated sequential or-
dering or temporal information [Blei and Lafferty, 2006a].
Under this model the documents are said to be exchange-
able [Blei and Lafferty, 2006b].

A limitation of most models described in the existing lit-
erature lies in their assumption that the data corpus is static.
Here the term ‘static’ is used to describe the lack of any as-
sociated temporal information associated with the documents
in a corpus – the documents are said to be exchangeable [Blei
and Lafferty, 2006b]. However, research articles are added to
the literature corpus in a temporal manner and their ordering
has significance. Consequently the topic structure of the cor-
pus changes over time [Dyson, 2012; Rodriguez et al., 2014;
Beykikhoshk et al., 2015a]: new ideas emerge, old ideas are
refined, novel discoveries result in multiple ideas being re-
lated to one another thereby forming more complex concepts
or a single idea multifurcating into different ‘sub-ideas’ etc.
The premise in the present work is that documents are not ex-
changeable at large temporal scales but can be considered to
be at short time scales, thus allowing the corpus to be treated
as temporally locally static.

2 Proposed approach
In this section we describe the algorithm used to extract
knowledge from longitudinal document collections. For the
sake of completeness we begin by reviewing the relevant the-
ory underlying Bayesian mixture models suitable for the anal-
ysis of static corpora. We then explain how the proposed
algorithm builds upon and employs these static models to
extract nuanced temporal changes to the topic structure. In
Section 3.3 we describe a tool we developed to visualize
this complex web of interactions in a manner which allows
the user to explore the extracted data in an intuitive, quasi-
semantic manner.

2.1 Bayesian mixture models
The structure of mixture models makes them inherently suit-
able for the modelling of heterogeneous data whereby het-
erogeneity is taken to mean that observable data is gen-
erated by more than one ‘process’ (also referred to as a
‘source’). The key challenges lie in the lack of observability
of the correspondence between specific data points and their
sources, and the lack of a priori information on the number
of sources [Richardson and Green, 1997].

Bayesian non-parametric methods place priors on the
infinite-dimensional space of probability distributions and
provide an elegant solution to the aforementioned modelling
problems. Dirichlet Process (DP) in particular allows for the
model to accommodate a potentially infinite number of mix-
ture components [Ferguson, 1973]:

p (x|φ1:∞, φ1:∞) =
∞∑
k=1

πkf (x|φk) . (1)

where DP (γ,H) is defined as a distribution of a random
probability measure G over a measurable space (Θ,B), such
that for any finite measurable partition (A1, A2, . . . , Ar) of Θ
the random vector (G (A1) , . . . , G (Ar)) is a Dirichlet distri-
bution with parameters (γH (A1) , . . . , γH (Ar)). A Dirich-
let process mixture model (DPM) is obtained by associating
different mixture components with atoms φk, and assuming
xi|φk

iid∼ f (xi|φk) where f (.) is the kernel of the mixing
components.

Hierarchical DPMs
While the DPM is suitable for the clustering of exchange-
able data in a single group, many real-world problems are
more appropriately modelled as comprising multiple groups
of exchangeable data. In such cases it is desirable to model
the observations of different groups jointly, allowing them to
share their generative clusters. This “sharing of statistical
strength” emerges naturally when a hierarchical structure is
implemented.

The DPM models each group of documents in a collection
using an infinite number of topics. However, it is desired
for multiple group-level DPMs to share their clusters. The
hierarchical DP (HDP) [Teh et al., 2006] offers a solution
whereby base measures of group-level DPs are drawn from
a corpus-level DP. In this way the atoms of the corpus-level
DP are shared across the documents; posterior inference is
readily achieved using Gibbs sampling as described by Teh et
al. [2006].

2.2 Modelling topic evolution over time
We now show how the described HDP based model can be
applied to the analysis of temporal topic changes in a longi-
tudinal data corpus.

Owing to the aforementioned assumption of a temporally
locally static corpus we begin by discretizing time and di-
viding the corpus into epochs. Each epoch spans a certain
contiguous time period and has associated with it all doc-
uments with timestamps within this period. Each epoch is
then modelled separately using a HDP, with models corre-
sponding to different epochs sharing their hyperparameters
and the corpus-level base measure. Hence if n is the number
of epochs, we obtain n sets of topics φ =

{
φt1 , . . . ,φtn

}
where φt = {θ1,t, . . . , φKt,t} is the set of topics that describe
epoch t, and Kt their number.

Topic relatedness
Our goal now is to track changes in the topical structure of
a data corpus over time. The simplest changes of interest in-
clude the emergence of new topics, and the disappearance of

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 10

others. More subtly, we are also interested in how a specific
topic changes, that is, how it evolves over time in terms of the
contributions of different words it comprises. Lastly, our aim
is to be able to extract and model complex structural changes
of the underlying topic content which result from the interac-
tion of topics. Specifically, topics, which can be thought of
as collections of memes [Leskovec et al., 2009], can merge to
form new topics or indeed split into more nuanced memetic
collections. This information can provide valuable insight
into the refinement of ideas and findings in the scientific com-
munity, effected by new research and accumulating evidence.

The key idea behind our tracking of simple topic evolu-
tion stems from the observation that while topics may change
significantly over time, changes between successive epochs
are limited. Therefore we infer the continuity of a topic
in one epoch by relating it to all topics in the immediately
subsequent epoch which are sufficiently similar to it under a
suitable similarity measure – we adopt the well known Bhat-
tacharyya distance (BHD):

ρBHD(p, q) = − ln
∑
i

√
p(i)q(i) (2)

where p(i) and q(i) are two probability distributions. This
approach can be seen to lead naturally to a similarity graph
representation whose nodes correspond to topics and whose
edges link those topics in two epochs which are related. For-
mally, the weight of the directed edge that links φj,t, the j-
th topic in epoch t, and φk,t+1 is ρBHD (φj,t, φk,t+1) where
ρBHD denotes the BHD. Alternatives to the BHD, such as
the Hellinger distance [Hellinger, 1909] are possible but we
found no compelling theoretical reason nor a meaningful (or
indeed significant) empirical difference to motivate its use
over the BHD.

In constructing a similarity graph a threshold is used
to eliminate automatically weak edges, retaining only the
connections between sufficiently similar topics in adjacent
epochs. Then the disappearance of a particular topic, the
emergence of new topics, and gradual topic evolution can be
determined from the structure of the graph. In particular if a
node does not have any edges incident to it, the correspond-
ing topic is taken as having emerged in the associated epoch.
Similarly if no edges originate from a node, the correspond-
ing topic is taken to vanish in the associated epoch. Lastly
when exactly one edge originates from a node in one epoch
and it is the only edge incident to a node in the following
epoch, the topic is understood as having evolved in the sense
that its memetic content may have changed.

A major challenge to the existing methods in the literature
concerns the detection of topic merging and splitting. Since
the connectedness of topics across epochs is based on their
similarity what previous work describes as ‘splitting’ or in-
deed ‘merging’ does not adequately capture these phenom-
ena. Rather, adopting the terminology from biological evo-
lution, a more accurate description would be ‘speciation’ and
‘convergence’ respectively. The former is illustrated in Fig-
ure 1(a) whereas the latter is entirely analogous with the time
arrow reversed. What the conceptual diagram shown illus-
trates is a slow differentiation of two topics which originate
from the same ‘parent’. Actual topic splitting, which does not

have a biological equivalent in evolution, and which is con-
ceptually illustrated in Figure 1(b) cannot be inferred by mea-
suring topic similarity. Instead, in this work we propose to
employ the Kullback-Leibler divergence (KLD) for this pur-
pose. The divergence ρKLD(p, q) is asymmetric and it mea-
sures the amount of information lost in the approximation of
the probability distribution p(i) with q(i). KLD is defined as
follows:

ρKLD(p, q) =
∑
i

p(i) ln
p(i)

q(i)
(3)

It can be seen that a high penalty is incurred when p(i) is
significant and q(i) is low. Hence, we use the BHD to track
gradual topic evolution, speciation, and convergence, while
the KLD (computed both in forward and backward directions)
is used to detect topic splitting and merging.

Automatic temporal relatedness graph construction
Another novelty of the work first described in this paper con-
cerns the building of the temporal relatedness graph. We
achieve this almost entirely automatically, requiring only one
free parameter to be set by the user. Moreover the meaning
of the parameter is readily interpretable and understood by a
non-expert, making our approach highly usable.

Our methodology comprises two stages. Firstly we con-
sider all inter-topic connections present in the initial fully
connected graph and extract the empirical estimate of the
corresponding cumulative density function (CDF). Then we
prune the graph based on the operating point on the relevant
CDF. In other words if Fρ is the CDF corresponding to a spe-
cific initial, fully connected graph formed using a particular
similarity measure (BHD or KLD), and ζ ∈ [0, 1] the CDF
operating point, we prune the edge between topics φj,t and
φk,t+1 iff ρ(φj,t, φk,t+1) < F−1ρ (ζ).

3 Evaluation and discussion
We now analyse the performance of the proposed framework
empirically on a large real world data set.

3.1 Evaluation data
Herein we adopt the data set first described by Beykikhoshk
et al. [2016] which is freely available (currently upon request)
from https://oa7.host.cs.st-andrews.ac.uk.
For full detail the reader is referred to the original publica-
tion; herein we summarize the main feature of the data set.

Raw data was collected using the PubMed interface to
the US National Library of Medicine. Scholarly articles on
the metabolic syndrome (MetS) and written in English were
retrieved by searching with the keyphrase “metabolic syn-
drome”. The earliest publication found was that by Berar-
dinelli et al. [1953]. A corpus of 31,706 publications match-
ing the search criteria was collected, with the chronologically
last matching one having been indexed by PubMed on the
10th Jan 2016.

Pre-processing
Raw data collected from PubMed is in the form of freeform
text. To prepare it for automatic analysis a series of ‘pre-
processing’ steps were required. Broadly speaking, the goal

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 11

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Epoch t+1 topics

Epoch t topic

(a) Topic speciation

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Pr
ob

ab
ili

ty
 d

is
tr

ib
u
ti
on

Vocabulary terms

Epoch t+1 topics

Epoch t topic

(b) Topic splitting

Figure 1: Unlike previously proposed methods, our algorithm explicitly distinguishes between two important topic evolution
phenomena: (a) topic speciation and (b) topic splitting. Analogous phenomena in the form of, respectively topic convergence
and topic merging are similarly obtained using BHD and KLD with the associated time arrow reversed.

of pre-processing is to remove words which are largely unin-
formative, reduce dispersal of semantically equivalent terms,
and thereafter select terms which are included in the vocabu-
lary over which topics are learnt.

Soft lemmatization using the WordNetr lexicon [Miller,
1995] was performed first in order to normalize for word in-
flections. No stemming was performed to avoid semantic dis-
tortion often effected by heuristic rules used by stemming al-
gorithms. After lemmatization and the removal of so-called
stop-words, approximately 3.8 million terms were obtained
when term repetitions are counted, and 46,114 when only
unique terms are considered. The vocabulary was constructed
by selecting the most frequent terms which explain 90% of
the energy in a specific corpus, resulting in a vocabulary con-
taining 2,839 terms.

3.2 Understanding the underlying model
Before describing the visualization framework we developed
in Section 3.3, it is important to understand the structure of
the model our visualization builds upon, including the na-
ture and the complexity of the extracted topic information.
Hence we begin by describing a set of quantitative experi-
ments which illustrates some of the key differences of our
temporal topic extraction algorithm.

We first demonstrate how our use of the two topic related-
ness measures (BHD and KLD) effectively captures different
aspects of topic relatedness. To obtain a quantitative measure
we looked at the number of inter-topic connections formed in
respective graphs both when the BHD is used as well as when
the KLD is applied instead. The results were normalized by
the total number of connections formed between two epochs,
to account for changes in the total number of topics across
time. Our results are summarized in Figure 2. A significant
difference between the two graphs is readily evident – across
the entire timespan of the data corpus, the number of Bhat-

tacharyya distance based connections also formed through the
use of the KLD is less than 40% and in most cases less than
30%. An even greater difference is seen when the proportion
of the KLD connections is examined – it is always less than
25% and most of the time less than 15%.

To get an even deeper insight into the contribution of the
two relatedness measures, we examined the corresponding
topic graphs before edge pruning. The plot in Figure 3 shows
the variation in inter-topic edge strengths computed using the
BHD and the KLD (in forward and backward directions) –
the former as the x coordinate of a point corresponding to a
pair of topics, and the latter as its y coordinate. The scatter of
data in the plot corroborates our previous observation that the
two similarity measures indeed do capture different aspects
of topic behaviour.

3.3 Interactive exploration and visualization
Our final contribution comprises a web application which al-
lows users to upload and analyse their data sets using the
proposed framework. A screenshot of the initial window of
the application when a data set is loaded is shown in Fig-
ure 4. Topics are visualized as coloured blobs arranged in
rows, each row corresponding to a single epoch (with the time
arrow pointing downwards). The size of each blob is propor-
tional to the popularity of the corresponding topic within its
epoch. Each epoch (that is to say, the set of topics associated
with a single epoch) is coloured using a single colour differ-
ent from the neighbouring epochs for easier visualization and
navigation. Line connectors between topics denote temporal
topic connections i.e. the connections in the resultant tem-
poral relatedness graph which, as explained in the previous
section, depending on the local graph structure encode topic
evolution, merging and splitting, and convergence and speci-
ation.

The application allows a range of powerful tasks to be per-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 12

Year
1980 1985 1990 1995 2000 2005 2010 2015

P
ro

po
rt

io
n

of
 B

H
 c

on
ne

ct
io

ns
sh

ar
ed

 w
ith

 K
LD

 c
on

ne
ct

io
ns

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Setting 1: 10 year epochs, 5 year overlap
Setting 2: 5 year epochs, 2 year overlap

(a) BHD-KLD normalized overlap

Year
1980 1985 1990 1995 2000 2005 2010 2015

P
ro

po
rt

io
n

of
 K

LD
 c

on
ne

ct
io

ns
 s

ha
re

d
w

ith
 B

H
 c

on
ne

ct
io

n
s

0

0.05

0.1

0.15

0.2

0.25

Setting 1: 10 year epochs, 5 year overlap
Setting 2: 5 year epochs, 2 year overlap

(b) KLD-BHD normalized overlap

Figure 2: The proportion of topic connections shared between
the BHD and the KLD temporal relatedness graphs, normal-
ized by (a) the number of BHD connections, and (b) the num-
ber of KLD connections, in an epoch.

Kullback-Leibler Divergence (normalized)
10-5 10-4 10-3 10-2 10-1 100

B
ha

tta
ch

ar
yy

a
di

st
an

ce
 (

no
rm

al
iz

ed
)

10-3

10-2

10-1

100

Inverse time arrow
Forward time arrow

Figure 3: Relationship between inter-topic edge strengths
computed using the BHD and the KLD before the pruning
of the respective graphs.

formed quickly and in an intuitive manner. For example, the
user can search for a given topic using keywords (and obtain
a ranked list), trace the origin of a specific topic backwards
in time, or follow its development in the forward direction,
examine word clouds associated with topics, display a range
of statistical analyses, or navigate the temporal relatedness
graph freely. Some of these capabilities are showcased in
Figure 5. In particular, the central part of the screen shows
a selected topic and the strongest ancestral and descendent
lineages. The search box on the left hand side can be used
to enter multiple terms which are used to retrieve and rank
topics by quality of fit to the query. Finally, on the right hand
side relevant information about the currently selected topic
is summarized: its most popular terms are both visualized in
the form of a colour coded word cloud, as well as listed in
order in plain text underneath. Additional graph navigation
options include magnification tools accessible from the bot-
tom of the screen, whereas translation is readily performed by
simply dragging the graph using a mouse or a touchpad. The
application and its code are freely available upon request.

4 Summary and Conclusions
In this work we addressed some of the challenges faced by re-
searchers in the task of analysing, organizing, and searching
through large corpora of scientific literature. We described
a framework for the visualization of a recently introduced
complex temporal topic model. The model is based on non-
parametric Bayesian techniques which is able to extract and
track complex, semantically meaningful changes to the topic
structure of a longitudinal document corpus and is the first
such model capable of differentiating between two types of
topic structure changes, namely topic splitting and what we
termed topic speciation. Built upon this model is a sophisti-
cated web based visualization tool which enables a researcher
to analyse literature in an intuitive, quasi-semantic fashion.
The tool allows the user to search for particular topics, track
their temporal interdependencies (e.g. ancestral or descen-
dent topics), and examine their dominance within the corpus
across time. Experiments on a large corpus of medical lit-
erature concerned with the metabolic syndrome was used to
illustrate our contributions.

References
F. Abel, Q. Gao, G. J. Houben, and K. Tao. Analyzing user

modeling on Twitter for personalized news recommenda-
tions. In Proc. International Conference User Modeling,
Adaptation and Personalization, pages 1–12, 2011.

A. Agarwal, B. Xie, I Vovsha, O. Rambow, and R. Passon-
neau. Sentiment analysis of Twitter data. In Proc. Work-
shop on Language in Social Media, pages 30–38, 2011.

V. Andrei and O. Arandjelović. Identification of promising
research directions using machine learning aided medical
literature analysis. In Proc. International Conference of the
IEEE Engineering in Medicine and Biology Society, 2016.

O. Arandjelović. Discovering hospital admission patterns us-
ing models learnt from electronic hospital records. Bioin-
formatics, 31(24):3970–3976, 2015.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 13

Figure 4: Screenshot of the initial window of the application we developed for free public analysis of custom data sets using
the method described in the present paper. Topics are visualized as coloured blobs arranged in rows, each row corresponding
to a single epoch (with the time arrow pointing downwards). The size of each blob is proportional to the popularity of the
corresponding topic within its epoch. Each epoch is coloured using a single colour different from the neighbouring epochs.
Line connectors between topics denote temporal topic connections across the temporal relatedness graph and encode topic
evolution, merging and splitting, and convergence and speciation.

O. Arandjelović. Prediction of health outcomes using big
(health) data. In Proc. International Conference of the
IEEE Engineering in Medicine and Biology Society, pages
2543–2546, August 2015.

E. Baucom, A. Sanjari, X. Liu, and M. Chen. Mirroring the
real world in social media: Twitter, geolocation, and senti-
ment analysis. In Proc. International Workshop on Mining
Unstructured Big Data Using Natural Language Process-
ing, pages 61–68, 2013.

W. Berardinelli, J. G. Cordeiro, D. de Albuquerque, and
A. Couceiro. A new endocrine-metabolic syndrome prob-
ably due to a global hyperfunction of the somatotrophin.
Acta Endocrinologica, 12(1):69–80, 1953.

A. Beykikhoshk, O. Arandjelović, D. Phung, S. Venkatesh,
and T. Caelli. Data-mining Twitter and the autism spec-
trum disorder: a pilot study. In Proc. IEEE/ACM Interna-
tional Conference on Advances in Social Network Analysis
and Mining, pages 349–356, 2014.

A. Beykikhoshk, O. Arandjelović, D. Phung, and
S. Venkatesh. Overcoming data scarcity of Twitter:
using tweets as bootstrap with application to autism-
related topic content analysis. In Proc. IEEE/ACM
International Conference on Advances in Social Network
Analysis and Mining, pages 1354–1361, August 2015.

A. Beykikhoshk, O. Arandjelović, D. Phung, S. Venkatesh,

and T. Caelli. Using Twitter to learn about the autism com-
munity. Social Network Analysis and Mining, 5(1):5–22,
2015.

A. Beykikhoshk, O. Arandjelović, D. Phung, and
S. Venkatesh. Discovering topic structures of a tem-
porally evolving document corpus. arXiv preprint, page
1512.08008, 2016.

D. Blei and J. Lafferty. Correlated topic models. Advances in
Neural Information Processing Systems, 18:147, 2006.

D. Blei and J. Lafferty. Dynamic topic models. In Proc. IMLS
International Conference on Machine Learning, pages
113–120, 2006.

D. Blei and J. Lafferty. A correlated topic model of Science.
Annals of Applied Statistics, 1(1):17–35, 2007.

J. Bollen, H. Mao, and A. Pepe. Modeling public mood and
emotion: Twitter sentiment and socio-economic phenom-
ena. In Proc.
International Conference on Weblogs and Social Media,
pages 450–453, 2011.

A. J. B. Chaney and D. M. Blei. Visualizing topic models. In
Proc. International Conference on Web and Social Media,
2012.

B. Christensen and G. Ellingsen. Evaluating model-driven
development for large-scale EHRs through the openEHR
approach. Int J Med Inform, 89:43–54, 2016.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 14

Figure 5: Illustration of some of the capabilities of the developed application: (i) the central part of the screen shows a selected
topic and the strongest ancestral and descendent lineages, (ii) the search box on the left hand side can be used to enter multiple
terms which are used to retrieve and rank topics, and (iii) on the right hand side relevant information about the currently selected
topic is summarized. Magnification tools are accessible from the bottom of the screen, whereas translation can be performed
using a simple dragging motion.

F. J. Dyson. Is science mostly driven by ideas or by tools?
Science, 338(6113):1426–1427, 2012.

T. S. Ferguson. A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, pages 209–230, 1973.

E. Hellinger. Neue begründung der theorie quadratischer for-
men von unendlichvielen veränderlichen. Journal für die
reine und angewandte Mathematik, 136:210–271, 1909.

J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-
tracking and the dynamics of the news cycle. In Proc.
ACM/SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 497–506, 2009.

G. A. Miller. WordNet: a lexical database for English. Com-
munications of the ACM, 38(11):39–41, 1995.

S. Richardson and P. J. Green. On Bayesian analysis of
mixtures with an unknown number of components (with
discussion). Journal of the Royal Statistical Society,
59(4):731–792, 1997.

M. G. Rodriguez, J. Leskovec, D. Balduzzi, and
B. Schölkopf. Uncovering the structure and tempo-
ral dynamics of information propagation. Network
Science, 2(1):26–65, 2014.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchi-
cal Dirichlet processes. Journal of the American Statistical
Association, 101(476):1566–1581, 2006.

I. Vasiljeva and O. Arandjelović. Automatic knowledge ex-
traction from EHRs. In Proc. International Joint Con-
ference on Artificial Intelligence Workshop on Knowledge
Discovery in Healthcare Data, 2016.

I. Vasiljeva and O. Arandjelović. Prediction of future hospital
admissions – what is the tradeoff between specificity and
accuracy? In Proc. International Conference on Bioinfor-
matics and Computational Biology, 2016.

I. Vasiljeva and O. Arandjelović. Towards sophisticated
learning from EHRs: increasing prediction specificity and
accuracy using clinically meaningful risk criteria. In
Proc. International Conference of the IEEE Engineering
in Medicine and Biology Society, 2016.

L. Xu, D. Wen, X. Zhang, and J. Lei. Assessing and com-
paring the usability of Chinese EHRs used in two Peking
University hospitals to EHRs used in the US: A method of
RUA. Int J Med Inform, 89:32–42, 2016.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 15

Identifying Academic Papers in Computer Science Based on Text Classification

Tong Zhou, Yi Zhang, Jianguo Lu
School of Computer Science, University of Windsor

401 Sunset Avenue, Windsor, Ontario N9B 3P4. Canada
Email: {zhou142, zhang18f, jlu}@uwindsor.ca

Abstract

This paper addresses the problem of classifying academic pa-
pers. It is a building block in constructing an advanced schol-
arly search engine, such as in crawling and recommending
papers in a particular area. Our goal is to identify the best
classification method for scholarly data, to choose appropri-
ate parameters, and to gauge how accurate academic papers
can be classified using document content only. In addition,
we also want to find out whether the neural network approach,
which has been proven very successful in many other areas,
can help in this particular problem.
Our experiments are conducted on 160,000 papers from the
arXiv data set. Each paper in arXiv is already labeled as either
a computer science (CS) paper or a paper in other areas. We
experimented with a variety of classification methods, includ-
ing Multinomial Naive Bayes on unigram and bigram mod-
els, and Logistic Regression on distributional representation
obtained from sentence2vec.
We find that computer science papers can be identified with
high accuracy (F1 close to 0.95). The best method is the
bigram model using Multinomial Naive Bayes method and
point-wise mutual information (PMI) as the feature selection
method.

Introduction
Academic papers need to be classified for a variety of appli-
cations. When we build an academic search engine special-
izing in computer science (CS), we need to judge whether a
document crawled from the web and online social networks
is a CS paper; When recommending papers in certain area,
we need to infer whether a paper is on that topic or in the
area of a specific researcher. There are numerous techniques
to address these problems, but the basic building block is the
classification techniques based on the text.

Although text classification has been studied extensively
(Aggarwal and Zhai 2012), studies targeting academic pa-
pers are limited and inconclusive (Craven, Kumlien, and
others 1999) (Kodakateri Pudhiyaveetil et al. 2009) (Lu and
Getoor 2003) (Caragea et al. 2011). It is not clear how accu-
rate we can classify academic papers, and what are the best
methods. Thus, our research questions are: 1) Can we tell
the difference between a CS paper and a non-CS paper? 2)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What is the best method for academic paper classification?
3) What are the best parameters for each method? Each clas-
sification method has many parameters. Take Naive Bayes
(McCallum, Nigam, and others 1998) method for exam-
ple, there are different models (e.g.,unigram, bigram (Cav-
nar, Trenkle, and others 1994)), different feature selection
methods (e.g., mutual information (MI), χ2, point-wise mu-
tual information (PMI) (Rogati and Yang 2002) (Yang and
Pedersen 1997)), different pre-processing (e.g., stop words,
stemming (Aggarwal and Zhai 2012)), systemic bias correc-
tion (e.g., length normalization and weight adjustment (Ren-
nie et al. 2003)). Due to the unique characteristics of aca-
demic papers, the choosing of correct parameters need to be
investigated. 4) Whether the neural network approach helps
in this area? Given the recent success of deep learning in
many domains, we need to check whether approaches spawn
from word2vec (Mikolov et al. 2013) and sentence2vec (Le
and Mikolov 2014) can improve the performance.

To find answers to these questions, we conducted a string
of experiments on a variety of scholarly data, including cite-
SeerX (Lawrence, Giles, and Bollacker 1999) and arXiv
(Warner 2005) data. This paper reports our result on the
arXiv data only. This is because each paper in arXiv is la-
beled with an area, and the label is considered accurate since
it is self-identified by its authors. Our experimental data set
is obtained from the most recent arXiv collection after bal-
ancing and duplicate removing, which contains 80,000 CS
papers as positive class and 80,000 non-CS papers as nega-
tive class.

The methods we tested include multinomial Naive Bayes
(MNB) on unigram and bigram models, and MNB and lo-
gistic regression (Hosmer, Jovanovic, and Lemeshow 1989)
on vector representations generated using sentence2vec. We
chose these methods for scalability consideration. Other
methods, such as the well-known SVM (Joachims 1998), are
tried without success. The experiments are carried on two
powerful servers with 256 GB memory and 24 core CPU.

Our result shows that CS papers can be classified with
high accuracy with large training data. Most methods can
achieve an F1 value above 0.9. The best method is the bi-
gram model using MNB. The out-of-box sentence2vec is in-
ferior to the bigram model by almost 2 percent. Interest-
ingly, removing stop words helps in all the methods, even in
sentence2vec, while stemming has limited impact. Histor-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 16

ically, PMI is considered inferior in text classification (Xu
et al. 2007). We show that when the feature size is large, it
out-performs MI and χ2.

Related work
Classifying Academic Papers
Classification of academic papers have been studied in small
scale with mixed results. (Craven, Kumlien, and others
1999) used Naive Bayes algorithm to classify biomedical
articles from MEDLINE database. On a corpus of 2,889
abstracts, they reported a precision of 0.70 when the recall
is 0.25. (Kodakateri Pudhiyaveetil et al. 2009) categorized
CiteSeer papers into 268 categories based on the ACM CCS
class definition. They used the k-NN algorithm to train their
classifier with 268 classes, each class has 10 sampled pa-
pers. For each test paper, they output the top K predicted
classes. They did not use systematic evaluation scheme (e.g.
cross validation scheme) to evaluate the performance of the
classifier.

(Lu and Getoor 2003) conducted text classification on
multiple data sets by using the logistic regression algo-
rithm. They experimented with three kinds of data sets:
Cora (4,187 papers), CiteSeer (3,600 papers) and WebKB
(700 web pages). Each data set has multiple classes. They
used stemming and stop words removal to pre-process the
paper text, and used 3-fold cross validation and F1 measure
to evaluate the classifier. By using text only as features to
train the classifier, the highest F1 for Cora is 0.643, for Cite-
Seer is 0.551 and for WebKB is 0.832. Still, the problem is
the small data size (less than 5,000 docs).

Also using Cora and CiteSeer data sets, (Caragea et al.
2011) discussed lowering feature dimensionality to simplify
the complexity of classifiers. Under SVM and Logistic Re-
gression, they experimented with three different schemes:
Mutual Information algorithm, topic models, and feature ab-
straction. Both of them can reach a better classification ac-
curacy compared with using all features, and feature abstrac-
tion performs the best (Cora: 79.88, CiteSeer: 72.85).

Classification and Feature Selection Algorithms
Apart from academic papers, most of the previous re-
searchers conducted more thorough text classification ex-
periments on benchmark data sets such as Reuters-21578.
(Yang and Liu 1999) thoroughly compares the performances
of five different text classification algorithms: SVM, k-NN,
LLSF (Linear Least Squares Fit), NNet (Neural Network)
and NB (Naive Bayes). Measured by micro average F1,
they concluded the performance ranking for the five algo-
rithms as SVM > kNN � {LLSF,NNet} � NB. Al-
though (Yang and Liu 1999) concluded that more sophisti-
cated algorithms such as SVM can outperform Naive Bayes,
the time and space complexity of SVM are much higher than
Naive Bayes. Hence, Naive Bayes is still very popular, es-
pecially in text classification where feature dimensionality
is much higher. Moreover, previous researchers have proved
that even though the independent assumption of Naive Bayes
can be unrealistic in most of the text classification scenar-
ios, Naive Bayes can still perform surprisingly well (Mc-

CS

Math

Physics

Figure 1: Three classes of documents. Vectors with 100
dimensions are trained using Sentence2vec. Then they are
reduced to two dimension using t-SNE.

Callum, Nigam, and others 1998). Authors in (McCallum,
Nigam, and others 1998) illustrated two models for Naive
Bayes: Bernoulli Model and Multinomial Model, and con-
cluded that Multinomial Model is better for text classifica-
tion. Another paper (Rennie et al. 2003) described improve-
ments on Multinomial Naive Bayes, using TF-iDF weight-
ing and length normalization to balance the feature weights.

As for feature selection, (Rogati and Yang 2002) com-
pared and concluded the most efficient filter feature selec-
tion algorithms for text classifiers. They concluded that χ2-
statistic (CHI) consistently outperformed other feature se-
lection criteria for multiple classification algorithms.

Data

The most recent arXiv collection contains 840,218 papers.
Each paper includes title and abstract, and is labeled with a
discipline (e.g. CS, Math, Physics, etc.). An overview of
the data can be depicted by Fig. 1. Each point is a vector
representing a paper in areas of Computer Science, Math or
Physics.

We observed that duplicates exist in the arXiv data set,
and removed the duplicates by comparing their URLs. Af-
ter removing duplicates, there are 84,172 CS papers and
575,043 non-CS papers. Non-CS corresponds to all the
other disciplines such as Math, Physics. We use random
sampling to equalize the amount of CS and non-CS papers
to solve the data set imbalanced problem (mostly reduce the
size of non-CS class). Our final experimental data set con-
tains sampled 80,000 CS and 80,000 non-CS papers. Most
of the non-CS papers belong to Math (29,899). Before ex-
tracting feature sets for different methods, we tokenize them
where each token contains only alphanumeric letters. Each
token is also case folded.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 17

Methods
We used NLTK (Bird 2006) English Stop Words List to fil-
ter stop words, and Porter stemmer (Porter 1980) to do the
stemming.

In unigram and bigram models, the feature sizes are in
the order of 106. Thus, only MNB is tested for scalability
reasons. We also tried Bernoulli NB method (BNB), which
is inferior to MNB. Since BNB is well-known to be inferior
for long text classification (McCallum, Nigam, and others
1998), we do not report BNB method in this paper.

Sentence2vec (Le and Mikolov 2014) is a deep learn-
ing approach to learn the embeddings of sentence from the
training data sets. It has two models. One is the Dis-
tributed Memory Model of Paragraph Vectors (PV-DM),
which trains a sentence vector along with the word vectors
to predict the missing content. In this model, paragraph vec-
tor represents the missing information from the current con-
text and can act as a memory of the topic of the paragraph.
The second model is Distributed Bag of Words version of
Paragraph Vector (PV-DBOW), in which the sentence vec-
tor is trained to predict the words in a small window. Com-
bined with negative sampling, sentence2vec can update over
2,000 embeddings per second per CPU core. Sentence2vec
have several parameters for both models, the most impor-
tant parameters are window-size, negative sample size, and
the demission of the vectors. After series tests, we find the
combination of PV-DM model with vector dimension = 100,
window size = 10, negative sample = 5 gives the best em-
beddings for classification. Thus, we keep this setup in the
following experiment.

In MNB for text classification, feature weight needs to
be adjusted (Rennie et al. 2003). TF-iDF and length nor-
malization are taken into consideration to compute feature
weights instead of simple frequency count. We tested the
feature weight normalization using the following equation
that is given in (Rennie et al. 2003):

f ′i = log(1 + fi) · log
N∑
d δid

f ′′i =
f ′i√∑
k(f

′
k)

2

(1)

The first equation that calculates f ′i is the TF-iDF normaliza-
tion. TF is the frequency of a feature in a document, and is
normalized using logarithm. iDF gives more weight to fea-
tures that have lower document frequency. The second equa-
tion that calculates f ′′i is length normalization, the function
is to eliminate the effect of length variation to the weight
of features. Finally, normalized feature weight uses f ′′i in-
stead of fi as the final weight of features that input into the
classification system.

Experiments
Impact of stop words and stemming
Table 1 and Table 2 show the performance on variations of
text pre-processing. Four models are created: SW is only
removing stop words, ST is only stemming, SW + ST is
removing stop words + stemming, OT is keeping original

SW ST SW + ST OT

MNB

Precision 0.9021 0.8999 0.8972 0.8992
Recall 0.9150 0.9077 0.9146 0.9049
F1 0.9085 0.9038 0.9058 0.9021

Time 0:01:38 0:01:37 0:01:37 0:01:38

LR

Precision 0.9269 0.9228 0.9241 0.9035
Recall 0.9318 0.9295 0.9295 0.9290
F1 0.9293 0.9261 0.9268 0.9262

Time 0:03:49 0:03:51 0:03:47 0:03:48

Table 1: Classification results using setence2vec represen-
tation. Vector dimension is 100. Best F1 is achieved using
logistic regression. Precision, recall, and F1 are average of
10 runs.

SW ST SW + ST OT
sentence2vec 0.9085 0.9038 0.9058 0.9021

unigram
Un-NL 0.9326 0.9293 0.9289 0.9288

NL 0.9354 0.9317 0.9314 0.9312

bigram
Un-NL 0.9460 0.9425 0.9440 0.9424

NL 0.9467 0.9449 0.9448 0.9444

Table 2: F1 for various classification methods. Removing
stop words (SW) improves the performance consistently for
all classification methods. Stemming (ST) is not necessary.

text. Table 1 is for sentence2vec approach, and 2 includes
the unigram and bigram models . We can see that remov-
ing stop words improves the F1 value consistently across all
methods, while effect of stemming is very limited. Table
1 also shows that under sentence2vec, Logistic Regression
(LR) outperforms Multinomial Naive Bayes (MNB) with
more than 2% F1 measure value. Furthermore, from Table
2 we can see that under unigram and bigram, models with
normalized feature weight consistently perform better than
un-normalized (original frequency count as feature weight)
models.

Impact of Training Data Size
Fig. 2 shows the F1 value as a function of training data
size. We can see that the performance improves with the data
size in general as expected. What is interesting is bigram
model increases with a faster pace, thereby it outperforms
all other methods when the data size is large. s2v approach
is better than bigram model when data size is small. But its
improvement tapers off with the growth of data.

Panel (B) in Fig. 2 shows the impact of normalization.
For both bigram and unigram models, normalization plays
a minor role. It can be explained by the fact that the docu-
ment size (title + abstract) are similar, and the dependency
between tokens are similar across different classes.

Table 3 also lists the statistics of average F1 measure val-
ues corresponding to Fig. 2.

Impact of feature size
We rank features based on their scores produced by PMI,
MI and χ2 respectively. In Fig. 3 we can clearly see the

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 18

Tranining data size
10

3
10

4
10

5
10

6

F
1

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

(A)

Unigram
Bigram
s2v MNB
s2v LR

Tranining data size
10

3
10

4
10

5
10

6

F
1

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

(B)

Unigram
unigram normalized
Bigram
Bigram normalized

Figure 2: Impact of training data size on F1. (A) Both unigram and bigram model out-perform sentence2vec when training data
is large; (B) Normalization plays a minor role in this data.

Size = 1,000 Size = 160,000
MNB LR MNB LR

sentence2vec 0.8848 0.8821 0.9085 0.9293

unigram
Un-NL 0.9148 - 0.9326 -

NL 0.9054 - 0.9354 -

bigram
Un-NL 0.8653 - 0.9460 -

NL 0.8671 - 0.9467 -

Table 3: Classification results with the increase of training
data size.

10
0

10
5

CTF in CS

10
0

10
5

C
T

F
 i
n

 n
o

n
-C

S

(A)

Top 3000
Remaining

10
0

10
5

CTF in CS

10
0

10
5

C
T

F
 i
n

 n
o

n
-C

S

(B)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n

 n
o

n
-C

S

(C)

Top 3000
Remaining

10
0

10
2

10
4

CTF in CS

10
0

10
1

10
2

10
3

10
4

C
T

F
 i
n

 n
o

n
-C

S

(D)

Top 3000
Remaining

Figure 3: Top features selected by different methods. Panel
(A) and (C): χ2; (B) and (D): PMI . (A) and (B) are uni-
gram models; (C) and (D) are bigram models.

unigram bigram
Rank Name CTF Rank Name CTF

1 quantum 2856 / 24576 1 magnetic field 28 / 2924
2 algorithm 41238 / 4843 2 state art 4422 / 279
3 field 4523 / 20706 3 field theory 46 / 2204
4 network 31142 / 4014 4 two dimensional 679 / 3150
5 performance 23800 / 2081 5 log n 3705 / 262
6 algorithms 23178 / 2032 6 polynomial time 3364 / 156
7 based 47442 / 12647 7 x ray 65 / 1781
8 spin 248 / 10336 8 paper propose 3348 / 234
9 0 5897 / 19455 9 ground state 10 / 1515
10 equation 1193 / 11352 10 o n 3631 / 441
11 information 28191 / 4953 11 black hole 68 / 1492
12 networks 25829 / 4076 12 boundary conditions 94 / 1483
13 learning 16895 / 965 13 real world 2849 / 244
14 problem 40677 / 11110 14 su 2 2 / 1223
15 magnetic 247 / 8610 15 phase transition 247 / 1733

Table 4: Top Selected Features by χ2

unigram bigram
Rank Name CTF Rank Name CTF

1 supersymmetric 0 / 1828 1 yang mills 0 / 1151
2 mev 0 / 1586 2 gauge theories 0 / 714
3 chiral 1 / 3074 3 su 3 0 / 680
4 pion 0 / 1161 4 non perturbative 0 / 636
5 supersymmetry 0 / 1035 5 spin orbit 0 / 621
6 branes 0 / 1003 6 sum rate 946 / 0
7 mesons 0 / 948 7 quantum gravity 0 / 554

.

.

.
.
.
.

11 beamforming 1439 / 0 23 mimo systems 680 / 0
23 precoding 949 / 0 24 outage probability 679 / 0
28 multicast 891 / 0 28 access control 665 / 0
31 cnn 842 / 0 29 logic programs 665 / 0
34 p2p 764 / 0 35 ieee 802 590 / 0
37 qos 1431 / 1 36 interference alignment 580 / 0

Table 5: Top Selected Features by PMI

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 19

plotted top ranked few features are all bias in only one spe-
cific class, either CS or non-CS. X-axis represents the CTF
(Class Term Frequency) in CS class, Y-axis represents the
CTF in non-CS class. In Fig. 3 (A) (B), red nodes represent
the top 3,000 ranked unigram features, and the blue nodes
are all the remaining features. We can see that all of the red
nodes are deviated from y = x, which means the CTF in one
class are significantly larger than the other class. Accord-
ingly, Fig. 3 (C) (D) shows the distribution of the bigram
top 3,000 ranked features and remaining features. Table 4
shows the top 15 selected features by χ2. Bold features in
Table 4 have higher CTF in CS class. We can see χ2 tend
to select big/popular words have high total occurrences but
still have significant different occurrences in the two classes,
and the ratio of CS features and non-CS features tend to be
equal. However, PMI tend to select very exclusive words,
we can see from Table 5 that top ranked features have al-
most 0 CTF in the other class. And top CS features ranked
lower than non-CS features, since non-CS papers have more
highly occurred exclusive words.

Fig. 4 demonstrates the impact of feature size on classifi-
cation performance when using three different kinds of fea-
ture selection algorithms: PMI, MI and χ2, and their com-
binations with bigram and unigram models. Two feature
weighting schemes, normalized feature weight and simple
frequency count, are tested. We select top k ranked features
for classifier and change k (X-axis) to draw the performance
curves. We can see that classification performance (F1) in-
creases with feature size for most cases. PMI increases faster
than χ2 and MI. Fig. 4 (A) (B) shows the unigram classifi-
cation results. We can see that when k > 30000, the clas-
sification results for PMI under frequency count model are
better than using all features; more features can let PMI per-
forms better than χ2 and MI for all the four models. More-
over, normalized feature weight improves the performances
for both PMI, MI and χ2. Fig. 4 (C) (D) shows the bigram
classification results. both PMI, MI and χ2 reaches the best
classification results when using all features. When gradu-
ally decreasing features, firstly χ2 and MI drops lower than
PMI, but then PMI drops below χ2 and MI. In addition, for
bigram features, an interesting phenomenon is that from fea-
ture size 106 to all features (5.2 millions), F1 first drop then
increase greatly to the highest value with all features. The fi-
nal increasing trend is caused by the increasing of TN (True
Negative) value that pull the classification precision higher.

Discussions and Conclusions
When classifying research papers in computer science, we
find that most classification methods can reach an F1 value
as high as 0.9. The best method is MNB on bigram language
model, which obtained an F1 value close to 0.95. The out-
of-box neural network approach does not perform as well
as bigram model. On sentence2vec representation, neither
logistic regression nor Naive Bayes can compete with bi-
gram model. Other classification methods, including SVM,
are also tested on smaller datasets because of the scalabil-
ity issue of these algorithms. SVM performs similar with
Logistic Regression on sentence2vec representation.

For multinomial Naive Bayes text classification, it was

10
2

10
4

10
6

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(A) unigram

CHI Square
MI
PMI

10
4

10
5

Feature size

0.91

0.915

0.92

0.925

0.93

F
1

Closeup of (A)

CHI Square
MI
PMI

10
2

10
4

10
6

Feature size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

F
1

(B) unigram normalized

CHI Square
MI
PMI

10
4

10
5

Feature size

0.931

0.932

0.933

0.934

0.935

F
1

Closeup of B

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.5

0.6

0.7

0.8

0.9

F
1

(C) bi-gram

CHI Square
MI
PMI

10
5

10
6

Feature size

0.934

0.936

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of C

CHI Square
MI
PMI

10
2

10
4

10
6

10
8

Feature size

0.6

0.7

0.8

0.9

F
1

(D) bigram normalized

CHI Square
MI
PMI

10
5

10
6

Feature size

0.938

0.94

0.942

0.944

0.946

F
1

Closeup of D

CHI Square
MI
PMI

Figure 4: Impact of feature size for unigram and bigram
models, with combination of text normalization. (A) Uni-
gram; (B) unigram normalized; (C) bigram; (D) bigram nor-
malized.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 20

long believed that PMI is not a good candidate for feature
selection. On the contrary to this believe, we show that PMI
is better than χ2 and MI. This is probably because of the size
of our training data is bigger– in Fig. 4 we can see that PMI
is inferior until the feature size exceeds 104.

This paper also shows that stop word removing improves
the performance for all the methods, including bag of words
model, bigram model, and various classification methods
on distributional vector representation of documents. On
the other hand, stemming has limited impact on the perfor-
mance.

It is surprising to see that academic papers can be clas-
sified with high accuracy based on content only. We also
tried to classify papers in narrow areas, such as papers in
conferences VLDB, SIGMOD, and ICSE, each class trained
on two thousand of papers. We also observed high accu-
racy in these experiments. Among VLDB and ICSE, the F1

is above 0.98 because these two conferences focus on very
different topics, one in database, the other in software engi-
neering. What is surprising is that among VLDB and SIG-
MOD, which are both database conferences, the F1 value is
also above 0.88. We believe that if we augment the data with
the citation and co-author networks, the accuracy could be
even higher.

With such high accuracy, we can envision numerous ap-
plications in the pipeline. We are building an academic
search engine in the area of computer science. When crawl-
ing the data from the Web and online social networks, we
can judge whether a document is a computer science paper;
when conducting author disambiguation, we can determine
whether a paper is written by a certain person or a group
of researchers or a community of academics; when recom-
mending papers, we can classify the paper according to a
researcher’s profile.

Acknowledgement
The research is supported by NSERC Discovery grant
(RGPIN-2014-04463).

References
Aggarwal, C. C., and Zhai, C. 2012. A survey of text classi-
fication algorithms. In Mining text data. Springer. 163–222.
Bird, S. 2006. Nltk: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presentation
sessions, 69–72. Association for Computational Linguistics.
Caragea, C.; Silvescu, A.; Kataria, S.; Caragea, D.; and Mi-
tra, P. 2011. Classifying scientific publications using ab-
stract features. American Association for Artificial Intelli-
gence.
Cavnar, W. B.; Trenkle, J. M.; et al. 1994. N-gram-based
text categorization. Ann Arbor MI 48113(2):161–175.
Craven, M.; Kumlien, J.; et al. 1999. Constructing bio-
logical knowledge bases by extracting information from text
sources. In ISMB, volume 1999, 77–86.
Hosmer, D. W.; Jovanovic, B.; and Lemeshow, S. 1989. Best
subsets logistic regression. Biometrics 1265–1270.

Joachims, T. 1998. Text categorization with support vector
machines: Learning with many relevant features. Springer.
Kodakateri Pudhiyaveetil, A.; Gauch, S.; Luong, H.; and
Eno, J. 2009. Conceptual recommender system for cite-
seerx. In Proceedings of the third ACM conference on Rec-
ommender systems, 241–244. ACM.
Lawrence, S.; Giles, L. C.; and Bollacker, K. 1999. Dig-
ital libraries and autonomous citation indexing. Computer
32(6):67–71.
Le, Q. V., and Mikolov, T. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.
Lu, Q., and Getoor, L. 2003. Link-based classification. In
ICML, volume 3, 496–503.
McCallum, A.; Nigam, K.; et al. 1998. A comparison of
event models for naive bayes text classification. In AAAI-98
workshop on learning for text categorization, volume 752,
41–48. Citeseer.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Porter, M. F. 1980. An algorithm for suffix stripping. Pro-
gram 14(3):130–137.
Rennie, J. D.; Shih, L.; Teevan, J.; Karger, D. R.; et al. 2003.
Tackling the poor assumptions of naive bayes text classifiers.
In ICML, volume 3, 616–623. Washington DC).
Rogati, M., and Yang, Y. 2002. High-performing fea-
ture selection for text classification. In Proceedings of
the eleventh international conference on Information and
knowledge management, 659–661. ACM.
Warner, S. 2005. The arxiv: Fourteen years of open access
scientific communication. In Free Culture and the Digital
Library Symposium Proceedings 2005, 56.
Xu, Y.; Jones, G. J.; Li, J.; Wang, B.; and Sun, C. 2007.
A study on mutual information-based feature selection for
text categorization. Journal of Computational Information
Systems 3(3):1007–1012.
Yang, Y., and Liu, X. 1999. A re-examination of text cate-
gorization methods. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, 42–49. ACM.
Yang, Y., and Pedersen, J. O. 1997. A comparative study on
feature selection in text categorization. In ICML, volume 97,
412–420.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 21

Near-duplicated Documents in CiteSeerX

Yi Zhang and Jianguo Lu
School of Computer Science, University of Windsor

401 Sunset Avenue, Windsor, Ontario N9B 3P4. Canada

Abstract

Academic literatures, especially those in the field of computer
science, are often posted multiple times on the Web. Schol-
arly index engines, such as Google Scholar and CiteSeerX,
crawl such documents from the open web as well as publish-
ers. To improve the quality of the search result, there is a
need to detect and coalesce duplicate or very similar (here-
after called near-duplicate) papers. Near-duplicate detection
is computationally expensive. Pair-wise comparison of mil-
lions of papers is not feasible even for the most advanced
machines. We combine SimHash and Jaccard similarity to
discover near-duplicate documents in a CiteSeerX data set,
which contains 2,118,122 full-text academic papers. We ob-
serve that 12% documents in CiteSeerX have near-duplicates
with Jaccard similarity larger than 0.9. Then we study the
near-duplicates and summarize six leading causes. We also
compare these near-duplicates with those appeared only once
on the web. We find that the citation count grows almost lin-
early with the number of duplications.

Introduction
Academic literatures, particularly the ones in computer sci-
ence, often occur multiple times on the Web. Researchers
may post drafts on their personal websites. Then, the same
paper may occur in arXiv, or proceedings of conferences,
etc. In addition, such documents may occur in course web
pages. Each version may differ slightly, mostly in the pub-
lisher’s information, or slight difference in content. Docu-
ments with slight difference are called near-duplicates. The
threshold for the similarity depends on the application. This
paper regards two documents are near-duplicates if their Jac-
card similarity of their trigrams exceeds 0.9.

Detecting near-duplicates is an essential component of
a search engine. Although the detection of near-duplicate
of web pages has been studied extensively (Broder 1997;
Broder et al. 1997), there are only a few works focus on
the academic literatures (). The questions we want to an-
swer are: 1) How many academic literatures on the web are
near-duplicates? How similar are they? 2) What cause these
near-duplicates? 3) What are the patterns of such multiple
postings? 4) Whether multiple occurrences correlate to the
citation number of the documents?

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To answer these questions, we need to conduct an ex-
periment on a large scale dataset. Our experiment is con-
ducted on CiteSeerX datasets, which contain over two mil-
lion full-text academic literatures. When detecting the near-
duplicates, we want to tolerate slight difference between
documents. Comparing the similarity in such a big dataset
is computationally expensive. Thus, an efficient algorithm
is required. In this paper, we first evaluate the state-of-art
SimHash algorithm on the academic literatures. For web
pages, it is reported to set Hamming distance k = 3 to
achieve 75% accuracy. We find that the accuracy is higher
in general for research papers. We also notice that the recall
of SimHash can be as high as 99% when retrieving the near-
duplicated literatures. By combining SimHash and Jaccard
similarity, we successfully discovered 271,906 distinct near-
duplicates with high accuracy, which contribute 12.84% of
the CiteSeerX dataset. By studying these near-duplicates,
we summarize 6 leading causes. And we also compare the
categories and publishing years of the near-duplicated doc-
uments with the one appeared only once on the web.

We also observe that paper with more near-duplicates are
cited more often. Moreover, it is interesting to see the cita-
tion counts grow almost linearly with duplicate occurrences.

Literature Review
Broder et. al. studied the near-duplicates on the AltaVista
search engine by calculating the MinHash of the docu-
ments (Broder 1998). After that, numerous improvements
have been proposed (Fetterly et al. 2003; Henzinger 2006;
Hajishirzi, Yih, and Kolcz 2010).

SimHash is one of the most widely used near-duplicates
detection algorithms, which is first introduced by Manku et.
al. in 2007 (Manku, Jain, and Das Sarma 2007). After test-
ing on three billion documents, the authors reported that the
optimal Hamming distance of SimHash is three, which is the
break-even point of precision and recall. Later on, Sood et.
al. (Sood and Loguinov 2011) studied the recall of SimHash.
They pointed out that SimHash can be faster and less space
consumption by sacrificing a small percentage of recall.

Although near-duplicates detection is well studied, most
of the existing works mainly focus on general documents,
especially the web page crawled by search engine. Only a
few works mention about the near-duplicates in academic
literatures. In 2013, Williams et. al. used SimHash to re-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 22

move duplicate documents in CiteSeerX(Williams and Giles
2013) and obtained F-score 0.91. Later on, they released a
website called SimSeerX(Williams, Wu, and Giles 2014) for
locating near-duplicate papers. However, they did not sum-
marize the duplicate literatures.

Compared with the existing works, we give a better view
of the near-duplicates in academic literatures. Our experi-
ment discovers the near-duplicated documents with high ac-
curacy. Most importantly, we analyse the features of the
near-duplicates.

Near-Duplicates Detection
If two documents share terms in large quantities, we call
them near-duplicates. A common technique for near-
duplicate detection is to break documents into a sequence
of consecutive tokens called n-grams (Broder et al. 1997).
Then the similarity between the documents can be measured
by Jaccard similarity. Given two documents, the Jaccard
similarity between their shingles A and B is defined as

JS(A,B) =
|A ∩B|
|A ∪B|

(1)

When the Jaccard similarity of these two documents
JS(A,B) is larger than a threshold t, where t is a num-
ber that close to 1, we say these two documents are near-
duplicates.

Generally speaking, Jaccard similarity is a good measure
of the similarity of two sets (Henzinger 2006; Broder et al.
1997). Thus, in this paper, we treat Jaccard similarity as the
ground true similarity between documents.

However, calculating Jaccard similarity directly is very
costly, especially when we want to find near-duplicates in a
large-scaled dataset. Sampling based techniques, such as
MinHash(Broder 1997), has been proposed to reduce the
computation time. SimHash, proposed by Manku et. al
(Manku, Jain, and Das Sarma 2007), is one of the most
widely applied near-duplicates detection algorithm. It maps
the tokens of a document into a fixed bit fingerprint. Then
the similarity can be estimated by the Hamming distance of
the fingerprint. The algorithm can be described as follow:

• Split each document into n-grams (here we use trigrams);

• Initialize a K-dimensional zero vector V;

• Get a K-bit hash value for each trigram;

• For each hash value, if the i-th hash value is 1, then the
i-th-bit of V increases by 1; if the i-th-bit hash value is 0,
then the i-th bit of V decreases by 1;

• Then normalize V by marking the positive vectors as 1,
and all the other vectors as 0. Thus, the fingerprint V can
be stored as a K-bit integer.

After mapping each document into a K-bit fingerprint,
where K = 64 in most applications, the similarity between
two documents can be estimated by the Hamming distance
of their SimHash fingerprints. Instead of computing all the
possible pairs in the dataset, SimHash hash the fingerprints
into certain tables to reduce the computation time. Accord-
ing to Pigeonhole principle(Herstein 2006), if n items are

put into m containers, with n > m, then at least one con-
tainer must contain more than one item. Thus, we can build
an index for the SimHash values by splitting the K-bit fin-
gerprint into k + 1 sub-fingerprint. When we need to find
the near-duplicates of a document, we can find all the candi-
dates by fetching out all the related documents that have the
same sub-fingerprints.

Parameters
SimHash requires a detection threshold – Hamming distance
k between the similar documents. Two documents can be
treated as near-duplicates if the Hamming distance between
their fingerprints is less or equal to k. Most existing works
use k = 3, which is first reported by Manku when detect-
ing the near-duplicates among web pages (Manku, Jain, and
Das Sarma 2007). However, scholarly documents are differ-
ent from web pages. For example, web pages crawled from
different websites may share the advertisement in the text;
Academic documents do not overlap a lot due to the restric-
tion of copyright; Academic documents are normally longer
than web pages.

Next, we need to find out the performance of SimHash
algorithm on scholarly literatures. In this paper, we col-
lect a sample of 20,000 possible duplicated documents from
CiteSeerX by matching their metadata. Then, we break the
documents into trigrams and compute the pair-wised Ham-
ming distances of the SimHash and the corresponding Jac-
card similarities.

0 2 4 6 8 10

Hamming distance - k

0.8

0.85

0.9

0.95

1

R
e
c
a
ll t = 0.9

t = 0.93
t = 0.96
t = 0.99

0 10 20 30 40

Hamming distance - k

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

t = 0.5
t = 0.9
t = 0.93
t = 0.96
t = 0.99
t = 1.0

Figure 1: Precision and Recall with different threshold t

Fig. 1 shows Hamming distance threshold k against pre-
cision and recall. From the top panel, we observe that given
a fixed detecting threshold t, the higher k is, the higher recall

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 23

we can achieve. For example, suppose we want to find near-
duplicated documents that overlap 90%, when k = 3 the re-
call is about 75%, which means about 25% near-duplicates
can not be found. In our work, we want to exam the features
of near-duplicated academic literatures, thus, we need to get
as many duplicated documents as we can. Therefore, a high
recall is demand, which means we need to set k as high as
possible.

However, a higher k may leads to two problems. The first
is the precision. A higher k means less accuracy. Bottom
panel of Fig. 1 shows that the precision decreases when a
higher k is selected. The rate of deterioration accelerates
when k becomes larger. The second, but larger problem is
the time complexity. Fig. 2 shows the run time against k for
different size of the datasets. Note that it is the execution
time on a powerful server. Runtime increases exponentially
with the growth of k. For a smaller data set that contains
20,000 documents, such growth of time is tolerable. For the
dataset which contains 2 million documents, it needs around
6 hours to run if k = 8 and needs many days to finish if
k = 20. Thus, in the later experiment, we set k = 8.

0 5 10 15 20 25

Hamming distance - k

10
-5

10
0

10
5

10
10

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

size = 20k
size = 2.1M
estimated time

Figure 2: Runtime against Hamming distance k on different
sizes of dataset

Next, we need to set a detecting threshold t for Jaccard
similarity. Figure 3 shows precision and recall in different
t with k = 8. As we can see, to guarantee the high recall
of the near duplicates, particularly when documents do not
overlap a lot, we need to set t as high as possible. But, a
larger t could result in less number of near-duplicates. For
example, when t = 0.99, we find 0.83 million pairs of near-
duplicates. While t = 0.90, the number grows to 0.9 7 mil-
lion. Our goal is to find as many near-duplicated documents
as we can. In our work, we set t = 0.9 to balance the re-
call and the number of near-duplicates. With such setup we
have a recall equals to 0.985 and accuracy of SimHash is
0.9581%. Meanwhile, to further boost the accuracy of the
results, we calculate the Jaccard similarity of the document
pairs captured by SimHash, and then save those have Jaccard
similarity larger than detection threshold t.

Experiment and Results
Experiment Setup
CiteSeerX (Giles, Bollacker, and Lawrence 1998; Bollacker,
Lawrence, and Giles 1998) is a scholarly index engine which

0.85 0.9 0.95 1

Jaccard similarity - t

0.95

0.96

0.97

0.98

0.99

1

P
re

c
is

io
n
 a

n
d
 R

e
c
a
ll

precision
recall

Figure 3: Relation between Jaccard similarity and precision
/ recall when k = 8

contains over 2 million full text academic literatures that
are crawled from the open Web. It provides an OAI col-
lection system that allows researchers download CiteSeerX
data. The CiteSeerX data contains metadata, PDF files and
corresponding text files that are extracted automatically us-
ing Prescript (Giles, Bollacker, and Lawrence 1998). In our
experiment, we collect all the available text files (2,118,112
in total) from CiteSeerX OAI, then break these files into tri-
grams. Go-Language has been used to support parallelism
computation. The program is executed on a PowerEdge
R720 server that has 24 cores and 256GB memory.

Results
With detecting Hamming distance k = 8, the program takes
6 hours and 37 minutes to finish. In total, we discover
604,596 pairs of near-duplicates, which contains 364,930
distinct documents. The near-duplicates have been sepa-
rated by their Hamming distance and Jaccard similarity in
Tab. 1 and Tab. 2. From Tab. 1 we can see that most near-
duplicated pairs have Hamming distance of 0. While it is
interesting to see that they distribute evenly among other val-
ues. Meanwhile, most pairs concentrate in the range 0.9-1
as shows in Tab. 2, which means two documents are either
very close or very different.

Hamming distance pairs # distinct documents #
0 397,112 79,461
1 19,767 35,666
2 23,165 42,147
3 24,441 43,903
4 25,437 45,998
5 26,483 47,368
6 27,237 48,576
7 29,298 51,362
8 31,656 54,790

sum 604,596 364,930

Table 1: Near-duplicates distribution by SimHash with k =
8

According to our previous evaluation, we can estimate the
population of near-duplicates showed in Fig. 4. Because dif-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 24

JS range Pairs # distinct documents #
0.9 - 1.0 524,888 270,906
0.8 - 0.9 51,161 61,847
0.7 - 0.8 19,826 22,491
0.6 - 0.7 6,164 6,518
0.5 - 0.6 1,491 1,576
0 - 0.5 1,066 1,592
sum 604,596 364,930

Table 2: Captured pairs and documents grouped by Jaccard
similarity

0 0.2 0.4 0.6 0.8 1

Jaccard Similarity

10
0

10
2

10
4

10
6

E
s
ti
m

a
te

 N
u

m
b

e
r

o
f

D
o

c
u

m
e

n
ts

Figure 4: Estimated population of duplicated documents
against Jaccard similarity

ferent Jaccard similarity ranges have different recall values,
the estimations are augmented with different factors.

Discussion
Why do these near-duplicates appear multiple time on the
Web? What cause the near-duplicates? To answer these
questions, we randomly select the near-duplicates pairs and
manually verified them. We summarize 6 leading causes of
the near-duplicates as follow: 1) Same file publishes in dif-
ferent web pages. 2) Different stylesheet. Some literatures
are written with LaTex. Different stylesheet, especially the
format of citations and references, can cause slightly differ-
ence in the compiled PDF files. These near-duplicates of-
ten share large Jaccard similarities. 3) Different versions of
documents. Some documents, books or reference manuals,
have different published versions. 4) Error pages caused by
the incorrect crawling process. CiteSeerX crawls the doc-
uments from the Internet. When crawling a web page, the
server may not response correctly. Thus, an error page re-
turns and is stored in the CiteSeerX database. These error
pages from same website carry the same information, thus
resulting in near-duplicates. 5) Extraction error. PDF is a
common document format. CiteSeerX uses Prescript to ex-
tract raw text from PDF. However, not every PDF can be ex-
tracted correctly. Some PDF files have been extracted into
short text files which contains only certain keywords (Intro-
duction, abstract, References et.). 6) Class assignments also
appeared in the CiteSeerX. These documents are not exactly
academic literatures and should be removed from the collec-

tion.
We also notice that near-duplicates caused by incorrect

crawling and extracting process. These documents some-
time not share large similarities and are shorter than aca-
demic literatures. Meanwhile, they appear around one to
two hundred times, which makes them easy to be detected
and cleaned. It is possible to train a classifier to identify such
near-duplicates, which we leave as the future work.

Next, we investigate the distribution of the duplicate oc-
currences showed in Fig. 5. The top panel in Fig. 5 shows
the frequency of duplicate occurrences. From the plot, we
can see that the distribution of duplicate occurrences follows
a power-law. More than 100,000 documents only duplicate
once (duplicate occurrence = 2) and more than 10,000 doc-
uments have duplicate occurrences = 3. Only a few docu-
ments have hundreds of near-duplicates.

The bottom panel is the duplicate occurrences against
their ranks. It shows that the top one duplicated 807 times.
The next repeats 195 times. We find that these files con-
tain only one character. After that, there are a group of
“nonsense” documents that are generated artificially to test
Google Scholar’s crawling and indexing strategy. They are
repeated around one hundred times. These type of near-
duplicates may be caused by incorrect crawling processing.
Here, we removed these near-duplicates in the following ob-
servation.

10
0

10
1

10
2

10
3

Duplicate Occurrence

10
0

10
2

10
4

10
6
C

o
u
n
t

(A)

10
0

10
2

10
4

10
6

Rank

10
0

10
1

10
2

10
3

D
u
p
lic

a
te

 O
c
c
u
rr

e
n
c
e

(B)

Figure 5: Distribution of near-duplicates.

Table 3 lists the top-10 duplicated documents in Cite-
SeerX. The most duplicated one is “Linearity and the pi-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 25

calculus” by Kobayashi, which repeats 49 times. Following
is the “Serverless Network File Systems” and “Application
Performance and Flexibility on Exokernel Systems”. Inter-
estingly, we notice that the duplicated documents not just
include published books or papers, but also have some doc-
uments for the industry.

Then we list the difference of the document types between
duplicated and non-duplicated literatures. Figure 6 shows
the media types of the duplicated literatures. CiteSeerX split
the document into 7 categories, and we keep the three major
components and put the rest into “others”. From the fig-
ure, we can see that “in-proceedings” contributes 68.86% in
the duplicated documents and 60.96% in the non-duplicated
ones.

The percentages of “books” of duplicated and non-
duplicated documents are nearly the same(0.25%). While
“article” contributes 27.95% in the duplicated documents
and 35.45% in the non-duplicated ones. Category “others”
in the top is 2.95%, which is slightly smaller than the one in
the bottom.

book(0.25%)

article(27.95%)

others(2.95%)

inproceedings(68.86%)

(A) Duplicated documents

book(0.26%)

article(35.45%)

others(3.34%)

inproceedings(60.96%)

(B) Non-duplicated documents

Figure 6: Categories of duplicated and non-duplicated doc-
uments.

Next, we study the features of the near-duplicates. The
top panel of Fig. 7 shows the distribution of publish years of
duplicated and non-duplicated documents. It is interesting
to see that they share the similar distribution. Documents
that are published in earlier years have a higher chance to be
seen, but they do not have many near-duplicates. The bot-
tom panel shows the box plot of duplicate occurrence against
publish years. We notice that older documents intend to have
more near-duplicates.

1960 1970 1980 1990 2000 2010

year

10
-6

10
-4

10
-2

10
0

p
e

rc
e

n
ta

g
e

duplicates

non-duplciates

1 2 3 4 5 6 7 8 9 10 11 12

Duplicate Occurrence

1960

1970

1980

1990

2000

2010

P
u
b
lis

h
 Y

e
a
r

Figure 7: Publish years of documents.

Citation number is another important index to evaluate
the quality of the literatures. We extract the citation count
from the CiteSeerX metadata and show the relation between
duplicate occurrence and citation count in Fig. 8. Panel
A shows the average citation counts over duplicate occur-
rences. Note that there are a few outliers due to the sparse
of the data when duplicate occurrences are large. Accord-
ing to the duplicate distribution in Figure 5(A), there are
only about 20 data points for duplicate occurrences that are
larger than 9. Thereby we ignore those sparse data and fo-
cus on the duplicate occurrences that are less than 9 in Panel
B. From panel B we can see that the citation count grows
linearly with the duplicate occurrence with Pearson Correla-
tion 0.8894, particularly when the data points are abundance.
Panel C is the box plot to show the dispersion of the data.

Conclusion
In this paper, we used SimHash and Jaccard similarity to de-
tect near-duplicates in CiteSeerX. We found that SimHash
needs to be set appropriate to balance the computational cost
and accuracy. By combining SimHash and Jaccard simi-
larity, we successfully retrieved most of the near-duplicates
with Jaccard similarity larger than 0.9. We reported Cite-
SeerX has 12.79% documents duplicated more than once.
This finding calls for further work to clean the CiteSeerX
data for the construction scholarly search engines.

We also analyzed the near-duplicates, studied their fea-
tures and made the observation of the relationship between
duplicate occurrences with different features. The most in-
teresting observation is that the citation count grows almost
linearly with duplicate occurrence. This observation is im-
portant for both researchers and practitioners in search en-

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 26

Rank Occurrence Type Document name
1 49 paper Linearity and the pi-calculus
2 16 paper Serverless Network File Systems
3 15 paper Application Performance and Flexibility on Exokernel Systems
4 14 paper A Fast File System for UNIX*
5 13 paper A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols
6 13 article Hints for Computer System Design
7 13 article Security Architecture for the Internet Protocol
8 12 paper Password Security: A Case History
9 12 paper End-To-End Arguments in System Design
10 12 article SWI-Prolog - Reference Manual

Table 3: Top-10 duplicated documents

10
0

10
1

10
2

Duplicate Occurrence

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 C

it
a
ti
o
n
 C

o
u
n
t

(A)

0 2 4 6 8 10

Duplicate Occurrence

0

50

100

150

200

250

300

A
v
e
ra

g
e
 C

it
a
ti
o
n
 C

o
u
n
t Citation

y=10x

(B)

1 2 3 4 5 6 7 8 9

Duplicate Occurrence

0

100

200

300

400

500

C
it
a

ti
o

n
 C

o
u

n
t

(C)

Figure 8: Citation count against duplicate occurrence. (A) average citation count against duplicate occurrence; (B) Zoom-in of
plot (A) ; (C) box plot.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 27

gine industry. The gems of scientific works are often pub-
licly available on the web in multiple locations. For re-
searchers, it will be awarded if your publications are listed
publicly on the Web. For the construction of academic
search engines, we should crawl the open Web to find the
gems in science.

Acknowledgement
This work is supported by NSERC Discovery program and
Cross Border Institute. We would like to thank Zhou Tong
for providing the citation count on the CiteSeerX dataset.

References
Bollacker, K. D.; Lawrence, S.; and Giles, C. L. 1998.
CiteSeer: An autonomous web agent for automatic retrieval
and identification of interesting publications. In Proceed-
ings of the Second International Conference on Autonomous
Agents, AGENTS ’98, 116–123. ACM.
Broder, A. Z.; Glassman, S. C.; Manasse, M. S.; and Zweig,
G. 1997. Syntactic clustering of the web. 29(8):1157–1166.
Broder, A. 1997. On the resemblance and containment of
documents. In Compression and Complexity of Sequences
1997. Proceedings, 21–29.
Broder, A. Z. 1998. Filtering near-duplicate documents. In
Proc. FUN 98.
Fetterly, D.; Manasse, M.; Najork, M.; and Wiener, J. 2003.
A large-scale study of the evolution of web pages. In Pro-
ceedings of the 12th International Conference on World
Wide Web, WWW ’03, 669–678. ACM.
Giles, C. L.; Bollacker, K. D.; and Lawrence, S. 1998. Cite-
Seer: An automatic citation indexing system. In Proceed-
ings of the Third ACM Conference on Digital Libraries, DL
’98, 89–98. ACM.
Hajishirzi, H.; Yih, W.-t.; and Kolcz, A. 2010. Adaptive
near-duplicate detection via similarity learning. In Proceed-
ings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
’10, 419–426. ACM.
Henzinger, M. 2006. Finding near-duplicate web pages:
A large-scale evaluation of algorithms. In Proceedings of
the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR
’06, 284–291. ACM.
Herstein, I. N. 2006. Topics in algebra. John Wiley & Sons.
Manku, G. S.; Jain, A.; and Das Sarma, A. 2007. Detecting
near-duplicates for web crawling. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
141–150. ACM.
Sood, S., and Loguinov, D. 2011. Probabilistic near-
duplicate detection using simhash. In Proceedings of the
20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, 1117–1126. ACM.
Williams, K., and Giles, C. L. 2013. Near duplicate de-
tection in an academic digital library. In Proceedings of the
2013 ACM Symposium on Document Engineering, DocEng
’13, 91–94. ACM.

Williams, K.; Wu, J.; and Giles, C. L. 2014. SimSeerX: A
similar document search engine. In Proceedings of the 2014
ACM Symposium on Document Engineering, DocEng ’14,
143–146. ACM.

Proceedings of the IJCAI 2016 Workshop on Scholarly Big Data

@Copyright for this work is retained by the authors. 28

ijcai16sbd Author Index

Author Index

Andrei, Victor 9
Arandjelovic, Ognjen 9

Giles, C. Lee 1, 3

Khabsa, Madian 3
Kim, Kunho 3

Lu, Jianguo 16, 22

Shen, Iris 2

Zhang, Yi 16, 22
Zhou, Tong 16

1

	titlepage
	Binder1.pdf
	preface
	pc
	reviewers
	toc
	invited_paper_1
	invited_paper_2
	invited_paper_3
	invited_paper_4
	invited_paper_5
	invited_paper_6

	author_index

