Anomaly Detection on Subway Operational Data
基于运营指标数据的异常分析模型
曹晨迪
caoCd@ksu.edu
Overview 简介

- Motivation 研究动机
- Introduction 相关介绍
- Experimental Method 实验方法
- Implementation 方法实施
- Result and Conclusion 结果和结论
Motivation 研究动机

- Anomaly analysis model based on subway operational indicator data. 基于地铁运营指标数据的异常分析模型
 - Automatic detection and forecast. 自动识别和预测
 - Optimized the model based on real-time operational data. 根据实时运营数据优化模型
- Construct an outlier detection or anomaly detection model. 建立离群点检测或是异常点检测模型
 - Model analysis of the relationship between delay time range, train, and destination. 模型分析延误时间范围，列车，目的地等相关因素的相互关系
Introduction 相关介绍

- Knowledge discovery in databases, commonly referred to as data mining, is generating enormous interest in both the research and software arenas. [1] 数据库中的知识发现，通常被称为数据挖掘，在研究和软件领域都产生了巨大的兴趣。[1]

- Python Outlier Detection (PyOD) is a comprehensive Python toolkit to identify outlying objects in multivariate data with both unsupervised and supervised approaches. [2] Python异常值检测（PYOD）是一种综合的Python工具包，用于在无监督和监督的方法中识别多变量数据中的离群对象。[2]

Anomaly Detection Models[1] - I 异常检测模型

1. Linear Models for Outlier Detection: 离群点检测的线性模型
 I. PCA: Principal Component Analysis (use the sum of weighted projected distances to the eigenvector hyperplane as the outlier scores) (12)
 II. MCD: Minimum Covariance Determinant (use mahalanobis distances as outlier scores) (10)
 III. One-Class Support Vector Machines (11)

2. Proximity-Based Outlier Detection Models: 基于邻近度的离群点检测模型
 I. LOF: Local Outlier Factor (9)
 II. CBLOF: Clustering-Based Local Outlier Factor (2)
 III. HBOS: Histogram-based Outlier Score (4)
 IV. kNN: k Nearest Neighbors (use the distance to the kth nearest neighbor as outlier score) (6)
 V. Average kNN or kNN Sum Outlier Detection (use the average distance to k nearest neighbors as the outlier score or sum all k distances) (7)
 VI. Median kNN Outlier Detection (use the median distance to k nearest neighbors as the outlier score) (8)

[1] https://github.com/yzhao062/Pyod
3. **Probabilistic Models for Outlier Detection**: 异常值检测的概率模型
 I. **ABOD**: Angle-Based Outlier Detection (1)

4. **Outlier Ensembles and Combination Frameworks**: 离群集合与组合框架
 I. **Isolation Forest** (5)
 II. **Feature Bagging** (3)

[1] https://github.com/yzhao062/Pyod
Comparison of All Implemented Models

所有实现模型的比较
kNN: k Nearest Neighbor Algorithms K近邻算法

- The principle is to find a predefined number of training samples closest in distance to the new point and predict the label from these. The number of samples can be a user-defined constant (k-nearest neighbor learning).[1] 原理是找到距离新点最近距离的预定义数量的训练样本，并从这些样本中预测标签。样本数可以是用户定义的常数（k-最近邻居学习）。

- Neighbors-based methods are known as non-generalizing machine learning methods since they simply “remember” all of its training data. 基于邻居的方法被称为非泛化机器学习方法，因为它们只是“记住”其所有训练数据。

Implementation - Data Trimming 实施 - 数据修剪

- Subway operational metadata originally stored in Oracle database.
 地铁运营元数据最初存储在Oracle数据库中。
- Prior to doing data mining, we need to clean and trim the data.
 在进行数据挖掘之前，我们需要清理和修剪数据。

Sample output from Oracle database: Oracle数据库的示例输出

<table>
<thead>
<tr>
<th>TRAIN_ID</th>
<th>DESTINATION_CODE</th>
<th>GROUP_TRAIN_ID</th>
<th>LOCAL_SUB_ID</th>
<th>GLOBAL_SUB_ID</th>
<th>TRAIN_ATTRIBUTE</th>
<th>STATION</th>
<th>PLATFORM</th>
<th>ARRIVAL_DEPARTURE_FLAG</th>
<th>DATE_VALUE</th>
<th>TIME_VALUE</th>
<th>DATE_VALUEEXPECTED</th>
<th>TIME_VALUEEXPECTED</th>
<th>TIME_DIFF_FROM_SCHD</th>
</tr>
</thead>
</table>
| "020", "384", "0427", "19", "02018", "16384", "33", "1", "D", "1530720000", "45496", "1530720000", "45493", ",-3"
| "004", "014", "0412", "06", "00406", "16384", "5", "2", "D", "1530720000", "45497", "1530720000", "45477", ",-20"
Implementation - Data Trimming 实施 - 数据修剪

- Convert the data format to be suitable for PyOD API.
 将数据转换为适合PyOD API的格式。
- Label the outlier in ground truth if the time is out of the range of ±30 seconds as scheduled.
 如果时间超出计划的±30秒，则在基本事实中标注离群点。
- TRAIN_ID, TIME_DIFF_FROM_SCHD(s) and Labels (0: inliers, 1: outliers).
 列车ID，计划时间偏差（秒），和标签（0：正常值，1：离群值）

<table>
<thead>
<tr>
<th>29</th>
<th>-65</th>
<th>1</th>
<th>24</th>
<th>-41</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>-44</td>
<td>1</td>
<td>13</td>
<td>-43</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>-45</td>
<td>1</td>
<td>15</td>
<td>-44</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-41</td>
<td>1</td>
<td>2</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>-47</td>
<td>1</td>
<td>28</td>
<td>-31</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>-45</td>
<td>1</td>
<td>10</td>
<td>-71</td>
<td>1</td>
</tr>
</tbody>
</table>
Result and Conclusion

- TRAIN_ID on X-axis, TIME_DIFF_FROM_SCH D(s) on Y-axis.

 X轴：列车ID，Y轴：计划时间偏差（秒）

- Above graph shows the ground truth, and the below graph shows the prediction.

 上图显示了基本事实，下图显示了预测。
Result and Conclusion 结果和结论

- DESTINATION_CODE on X-axis, TIME_DIFF_FROM_SCHD (s) on Y-axis
 X轴：目的地编码，Y轴：计划时间偏差（秒）
Thanks for your attention, any questions?
感谢您的关注，有什么问题吗？
All code and implementation has been uploaded on my GitHub: 所有代码已上传
https://github.com/paragon520/Pyod_CASCO
联系邮箱
Email: caocd@ksu.edu