Technical Inspection Checklist

For Multiagent Control of Traffic Signals

Version 1.1

Submitted in partial fulfillment of the requirements of the degree of MSE

Bryan Nehl
CIS 895 – MSE Project
Kansas State University
Table of Contents

1 Introduction ... 3
2 References .. 3
3 Items to be Inspected .. 3
4 Technical Inspectors .. 3
5 Technical Inspection Checklist .. 4
1 Introduction
This document contains the checklist and references for performing a technical inspection of the MACTS project. The document also identifies the items that are being inspected and the inspectors.

2 References
- All items to inspect can be found at: http://people.cis.ksu.edu/~bnehl/.
- Sample technical inspection cover letters can be found on Deepti Gupta’s MSE website: http://mse.cis.ksu.edu/deepti/. They are in the column labeled Phase 3.

3 Items to be Inspected
The following items from the System Architecture Design Document will be inspected:
1. System Architecture (Section 3)
 - System Analysis (Section 3.1)
 - Component Design (Section 3.3)
 - Component Interface Specification (Section 3.4)
 - System Design Rationale (Section 3.5)
 - High-Level Design (Section 3.6)
 - Mid-Level Design (Section 3.7)
2. Component Interaction (Section 4)
3. Formal USE/OCL Model (Section 5)

4 Technical Inspectors
- Denise Case
- Sindhu Thotakura
5 Technical Inspection Checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Pass/Fail/Partial</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Analysis Class Diagram clearly describes the high-level relationships between model elements. (3.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The reason for each component is clear. (3.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The component design diagrams use legal correct UML elements. (3.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Component Interface Specification clearly explains the major public methods. (3.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The rationale for the system architecture is clear (3.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The High-Level class diagram correctly shows how the system interfaces with SUMO. (3.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The symbols used in the class diagrams conform to UML 2.0 (3.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The symbols used in the sequence diagrams conform to UML 2.0 (Section 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classes in the USE/OCL model are consistent with classes in the UML diagrams. (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes in the USE/OCL are consistent with classes in the UML diagrams. (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associations in the USE/OCL are consistent with associations in the classes in the UML diagrams. (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplicities in the USE/OCL model are consistent with the multiplicities on the associations in the UML diagrams. (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>