
WHY KEYPHRASE EXTRACTION?

- The number of scholarly documents on the Web is exponentially increasing every year.
- Keyphrase extraction is the problem of automatically extracting important phrases or concepts (i.e. the essence) of a document.
- Keyphrases are shown to be rich sources of information for many applications such as document classification, clustering, recommendation, indexing, searching and summarization.
- During these *big data* times, keyphrases associated with research papers can allow for *efficient processing* of more information in less time.
- Also useful in many ML and IR applications such as topic tracking, information filtering, and search.

STATS

Number of Research Papers indexed by two important digital libraries in the fields of computer and information science over the past years.

From Data to Knowledge

- Scientific research papers typically propose innovative solutions or extend the state-ofthe-art algorithms for existing research problems.
- In addition to a document's textual content, other informative neighborhoods exist that have the potential to improve keyphrase extraction. For example, research papers are highly inter-connected in giant *citation networks*, where papers *cite* or *are cited* by others.
- ▶ In a citation network, information flows from one paper to another via the citation relation.
- ▶ These contexts are not arbitrary, but they serve as brief summaries of a cited paper.

	Target Paper	basket recomme	Author-an ndation, markov chain, n		
Cited Context	Factorizing Personalized Markov Chains for Next-Basket Recommendation				
Where You Like to Go Next: Successive Point-of-Interest Recommendation Chen Cheng, Haigin Yang, Michael R. Lyu, Irwin King methods, e.g., Bayesian Probabilistic Tensor Factorization (BPTF) [Xiong et al., 2010], factorized personalized Markov chains (FPMC), [Rendle et al., 2010], and etc., have been pro- posed and demonstrated themselves as promising methods in FPMC: this method is proposed in [Rendle et al., 2010], which is a strong baseline model embedding users' preference and their personalized Markov Chain to provide next-basket item recommendation. our FPMC-LR borrows the idea of factoring personalized Markov chain (FPMC) for solving the task of next-basket recommendation [Rendle et al., 2010], we emphasize on users' movement constraint, i.e., moving around a local region, and	ABSTRACT Recommender systems are an many websites. Two of the most based on matrix factorization (I (MC). MF methods learn the ge factorizing the matrix over observe On the other hand, MC methods m by learning a transition graph ov predict the next action based on the In this paper, we present a method together. Our method is based of graphs over underlying Markov each user an own transition matrix the method uses a transition cube estimating the transitions are u method factorizes the transition interaction model which is a spi Decomposition. We show that our MC (FPMC) model subsumes to chain and the normal matrix for learning the model parameters, we the Bayesian Personalized Rank	for Next-Basket Rec Christoph Freudenth important component of popular approaches are MF) and Markov chains neral taste of a user by ed user-item preferences. nodel sequential behavior rer items that is used to be recent actions of a user. bringing both approaches n personalized transition chains. That means for x is learned – thus in total e. As the observations for usually very limited, our n cube with a pairwise ecial case of the Tucker factorized personalized both a common Markov actorization model. For e introduce an adaption of	commendation		
	sequential basket data. Empirio FPMC model outperforms bot factorization and the unperson learned with and without factorizat	th the common matrix nalized MC model both	recommender.		

Can we effectively exploit information available in large inter-linked document networks in order to improve the performance of keyphrase extraction?

notated keywords: atrix factoriza

ieme

- - - - - - - nder systems have earchers. Zimdars tial recommende hey investigate how

m recommendation actorization mode trix of user-item [2] and Pan and or userved paris are treated

sequential patterns r_generating et al. [9] introduce a Markov decision

Citing contexts

lso a MC based

CITATION-ENHANCED KEYPHRASE EXTRACTION (CEKE)

We propose a supervised binary classification model called CeKE, built on a combination of novel features that capture information from citation contexts and existing features from previous works.

Generating Candidate Phrases

- We first apply parts-of-speech filters and retain only the nouns and adjectives Porter Stemmer is applied on every word
- Words that have contiguous positions in the document are concatenated into *n*-grams
- Finally, we eliminate phrases that end with an adjective and the unigrams that are adjectives

Features

Feature Name	Description
Existing feature	s for keyphrase extraction
tf-idf	term frequency * inverse document frequency, co
	a target paper; used in KEA
relativePos	the position of first occurrence of a phrase divide
	number of tokens; used in KEA and Hulth's met
POS	the part-of-speech tag of the phrase; used in Hult
Novel features -	Citation Network Based
inCited	if the phrase occurs in cited contexts
inCiting	if the phrase occurs in citing contexts
citation tf-idf	the tf-idf value of the phrase, computed from the
	citation contexts
	Extensions of Existing Features
first position	the distance of the first occurrence of a phrase from
	beginning of a paper
tf-idf-Over	the distance of the first occurrence of a phrase from beginning of a paper <i>tf-idf</i> larger than a threshold θ the distance of the first occurrence of a phrase from beginning of a paper is below some value θ
firstPosUnder	the distance of the first occurrence of a phrase from
	beginning of a paper is below some value β

DATASETS

- We compiled two datasets consisting of titles and abstracts from two top-tier machine learning conferences:
- World Wide Web (WWW) Knowledge Discovery and Data Mining (KDD)
- The *author-annotated* keyphrases were treated as the gold standard. • The citation contexts' length was set to 50 words around the citation mention.

	Num. (#)	Average	Average	Average	#uni-	#bi-	#tri-
	Papers	Cited Ctx.	Citing Ctx.	Keyphrases	grams	grams	grams
WWW	425	15.45	18.78	4.87	680	1036	247
KDD	365	12.69	19.74	4.03	363	853	189

Results

How does CeKE compare with the existing supervised models that use only **INFORMATION INTRINSIC TO THE DATA?**

	WWW			KDD		
Method	Precision	Recall	F1-score	Precision	Recall	F1-score
Citation - Enhanced (CeKE)	0.227	0.386	0.284	0.213	0.413	0.280
Hulth - <i>n</i> -gram with tags	0.165	0.107	0.129	0.206	0.151	0.172
KEA	0.210	0.146	0.168	0.178	0.124	0.145

Figure : Comparison of CeKE with Hulth's *n*-grams with tags and KEA methods. Hulth's features: POS, relative position, document frequency and collection frequency. KEA's features: *tf-idf* and *relative position*

Computer Science and Engineering, University of North Texas

computed from

- led by the total ethods
- Ith's methods
- e aggregated

from the

from the

Results

How is our Citation-Enhanced algorithm comparing with recent unsupervised MODELS

	WWW			KDD			
Method	Precision	Recall	F1-score	Precision	Recall	F1-score	
Citation - Enhanced (CeKE)	0.227	0.386	0.284	0.213	0.413	0.280	
TF-IDF - Top 5	0.089	0.100	0.094	0.083	0.102	0.092	
TF-IDF - Top 10	0.075	0.169	0.104	0.080	0.203	0.115	
TextRank - Top 5	0.058	0.071	0.062	0.051	0.065	0.056	
TextRank - Top 10	0.062	0.133	0.081	0.053	0.127	0.072	
ExpandRank - 1 neigh Top 5	0.088	0.109	0.095	0.077	0.103	0.086	
ExpandRank - 1 neigh Top 10	0.078	0.165	0.101	0.071	0.177	0.098	
ExpandRank - 5 neigh Top 5	0.093	0.113	0.100	0.080	0.108	0.090	
ExpandRank - 5 neigh Top 10	0.080	0.172	0.104	0.068	0.172	0.095	
ExpandRank - 10 neigh Top 5	0.094	0.113	0.100	0.077	0.103	0.086	
ExpandRank - 10 neigh Top 10	0.076	0.162	0.099	0.065	0.164	0.091	

Figure : Comparison of CeKE state-of-the-art unsupervised systems. *TextRank*: window size is set to 2. *ExpandRank*: window size is set to 10.

How well does our proposed model perform in the absence of either cited or **CITING CONTEXTS?**

	WWW			KDD		
Method	Precision	Recall	F1-score	Precision	Recall	F1-score
CeKE - Both contexts	0.227	0.386	0.284	0.213	0.413	0.280
CeKE - Only cited contexts	0.222	0.286	0.247	0.192	0.300	0.233
CeKE - Only citing contexts	0.203	0.342	0.253	0.195	0.351	0.250

Figure : Results of CeKE using both context and using only cited or citing contexts

Anecdotal Evidence

Our classifier was trained on both WWW and KDD datasets and was evaluated on an award winning paper published in the EMNLP Conference.

• We gathered from the Web 49 cited contexts and 30 citing contexts. • The classifier was tuned to return as keyphrases only those that had an extremely high probability (we used a threshold of 0.985).

Unsupervised Semantic Parsing^{0.997}

We present the first unsupervised approach to the problem of learning a semantic parser^{1.000}, using Markov logic^{0.991}. Our USP system^{0.985} transforms dependency trees into quasi-logical forms, recursively induces lambda forms from these, and clusters them to abstract away syntactic variations of the same meaning. The MAP semantic parse^{1.000} of a sentence is obtained by recursively assigning its parts to lambda-form clusters and composing them. We evaluate our approach by using it to extract a knowledge base from biomedical abstracts and answer questions. USP^{1.000} substantially outperforms TextRunner, DIRT and an informed baseline on both precision and recall on this task.

Human annotated labels: unsupervised semantic parsing, Markov logic, USP system Figure : The title and abstract of an award winning paper published in the EMNLP conference by Poon and Domingos (2009). *Grey* - filtered out words; *Black* - candidate phrases; **Bold** red - predicted keyphrases; Numbers - classifier's confidence.

Keyphrase	#cited c.	#citing c.	
semantic parser	29	26	The table of
USP	31	10	of every
Markov logic	15	10	J
unsupervised semantic parsing	12	1	
USP system	3	2	

CONCLUSIONS AND FUTURE DIRECTIONS

- The proposed citation-enhanced supervised framework performs substantially better compared with state-of-the-art supervised and unsupervised models.
- Our model can be extended to other types of documents such as webpages, weblogs or e-mails.
- Using external sources, e.g. Wikipedia, could increase the performance by identifying better candidate phrases.
- Extensions to other domains, e.g. Biology and Chemistry, and other applications, e.g. document summarization, are of particular interest.

on the left shows the term-frequency v predicted keyphrase within the citation network.