
MSE Presentation 1
MultiAgent Control of Traffic Signals (MACTS)

Bryan Nehl
MSE Candidate

Agenda
• Project Vision

• System Context

• Project Requirements and Plan

• Cost Estimation

• Project Software Quality Assurance Plan

• Candidate Architecture Overview

• Demonstration Agent Communication

• Demonstration Interaction with Simulator (SUMO)

• Phase II Deliverables

• Project Log, Risks, Spikes and Concerns

• Questions/Comments

• References

Project Vision

• Goal
The goal of this project is to create a multiagent system that is

capable of traffic light signal control which results in an improved

travel experience.

• Motivation
Most traffic light systems today are strictly timing based. Traffic

flow studies are required to create timing plans and atypical

conditions cause problems. It is also very frustrating to have to

stop for a red light when there is no opposing traffic.

System Context

Project

Requirements

Project Plan

Cost Estimation

Cost Estimation: Size Estimates

Early Design

Calculations

Project Software Quality

Assurance Plan (SQAP)

• Management Organization

• Documentation

• Standards, Practices, Conventions and Metrics

• Test plan

• Problem reporting and corrective action

• Tools, techniques and methodology

• Record collection, maintenance and retention

Candidate Architecture Overview

Demonstration: Agent Communication

Demonstration Agent Communication

Demonstration Agent Communication

Demonstration Interaction with SUMO

Phase II Deliverables
• Action Items from Phase 1

• Vision Document 2.0

• Project Plan 2.0

• Formal Requirements Specification

• Architecture Design 1.0

• Test Plan

• Formal Technical Inspection Checklist

• Executable Architecture Prototype

• Risk Log Update

• Presentation 2

Project Log

• Maintained as a Google Document

• Exported as PDF for website

Project Risks and Spikes

Risks

• Python

• RabbitMQ

• MongoDB

• SUMO

• git

• Scope

• Time

Spikes

• Python

• RabbitMQ

– Q Fanout

– Aggregation

• MongoDB

– training

• git

– reading

– seminars

– hands on use

Spikes

• SUMO

– Network Load

– Network Double T

– Read from TRACI

– Send to TRACI

– Network Metrics

– Read Sensors

– Add Sensors

Questions and Comments

?

References
• SUMO, “Simulation for Urban MObility,” Sep. 2011;

http://sourceforge.net/apps/mediawiki/sumo/index.php?title=Main_Page.

• T. Masterton and D. Topiwala, “Multi-Agent Traffic Light Optimisation and Coordination,” white

paper, Thales Group, Reference VCS081002, Issue 2, 2008.

 W. Royce, Software Project Management: A Unified Framework, Addison-Wesley,1998, p. 34, pp. 265-

281.

 B. Boehm et al., “Cost Models for Future Software Processes: COCOMO 2.0,” Annals of Software

Eng., Vol. 1, 1995, pp. 57-94.

 K-State Master of Software Engineering web site, “MSE Portfolio Requirements,”

 November 28, 2011; http://mse.cis.ksu.edu/portfolio.html.

 Center for Systems and Software Engineering web site, “COCOMO II,” December 4, 2011:

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html.

 The Code Project web site, “Software Project Cost Estimates Using COCOMO II Model,” December 4,

2011: http://www.codeproject.com/KB/architecture/cocomo2.aspx.

 Naval Postgraduate School web site, “COCOMO II - Constructive Cost Model,” December 4, 2011:

http://diana.nps.edu/~madachy/tools/COCOMOII.php.

 Center for Software Engineering, USC, COCOMO II: Model Definition Manual Version 2.1, 2000.

 The Code Project web site, “Calculating Function Points,” December 4, 2011:

http://www.codeproject.com/KB/architecture/Calculate_Function_Point.aspx.

 USC Center for Software Engineering website, “COCOMO II Affiliates,” December 4, 2011:

http://csse.usc.edu/csse/affiliate/private/COCOMOII_Driver+Calc_Ss/SpreadSheet-COCOMOII.html.

References 2
• IEEE Std. 730-1998, IEEE Standard for Software Quality Assurance Plans, IEEE 1998.

• IEEE Std. 730.1-1995 IEEE Guide for Software Quality Assurance Planning, IEEE, 1995.

• Python Software Foundation, “PEP 8 -- Style Guide for Python Code”, Python, 24 Sep. 2011;

http://www.python.org/dev/peps/pep-0008/.

• Python Software Foundation, “PEP 257 – Docstring Conventions”, Python, 24 Sep. 2011;

http://www.python.org/dev/peps/pep-0257/.

• K. Hill, “GMoDS-based Runtime Agent Role Interpreter SQA Plan 1.0”, People, 15 Sep. 2011;

http://people.cis.ksu.edu/~kylhill/phase_1/sqa_plan.pdf.

• B. Nehl, “Multiagent Control of Traffic Signals Project Plan 1.0”, People, 26 Sep. 2011;

http://people.cis.ksu.edu/~bnehl/repos/macts.git/.

• W. Royce, Software Project Management; Addison-Wesley, 1998, pp. 290-291.

