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Project Vision 

• Goal 
The goal of this project is to create a multiagent system that is 

capable of traffic light signal control which results in an improved 

travel experience. 

 

• Motivation 
Most traffic light systems today are strictly timing based.  Traffic 

flow studies are required to create timing plans and atypical 

conditions cause problems.  It is also very frustrating to have to 

stop for a red light when there is no opposing traffic. 

 



System Context 



Project 

Requirements 



Project Plan 



Cost Estimation 





Cost Estimation: Size Estimates 



Early Design 

Calculations 



Project Software Quality 

Assurance Plan (SQAP) 

• Management Organization 

• Documentation 

• Standards, Practices, Conventions and Metrics 

• Test plan 

• Problem reporting and corrective action 

• Tools, techniques and methodology 

• Record collection, maintenance and retention 



Candidate Architecture Overview 



Demonstration: Agent Communication 



Demonstration Agent Communication 



Demonstration Agent Communication 



Demonstration Interaction with SUMO 

 



Phase II Deliverables 
• Action Items from Phase 1 

• Vision Document 2.0 

• Project Plan 2.0 

• Formal Requirements Specification 

• Architecture Design 1.0 

• Test Plan 

• Formal Technical Inspection Checklist 

• Executable Architecture Prototype 

• Risk Log Update 

• Presentation 2 

 



Project Log 

• Maintained as a Google Document 

• Exported as PDF for website 

 



Project Risks and Spikes 

Risks 

• Python 

• RabbitMQ 

• MongoDB 

• SUMO 

• git 

• Scope 

• Time 

Spikes 

• Python 

• RabbitMQ 

– Q Fanout 

– Aggregation 

• MongoDB 

– training 

• git 

– reading 

– seminars 

– hands on use 

Spikes 

• SUMO 

– Network Load 

– Network Double T 

– Read from TRACI 

– Send to TRACI 

– Network Metrics 

– Read Sensors 

– Add Sensors 



Questions and Comments 

? 
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